2D FEM analysis for coupled thermo-hydro-mechanical-migratory processes in near field of hypothetical nuclear waste repository
来源期刊:中南大学学报(英文版)2010年第3期
论文作者:张玉军 张维庆
文章页码:612 - 620
Key words:radioactive nuclide; concentration; thermo-hydro-mechanical-migratory coupling; 2D FEM analysis
Abstract: In order to consider the influence of temperature and stress fields on the migration of radioactive nuclide with underground water movement, an elastoplastic model and a 2D FEM code for analysis of coupled thermo-hydro-mechanical (THM) processes in saturated and unsaturated porous media were extended and improved through introducing the percolation and migration equation, so that the code can be used for solving the temperature field, flow field, stress field and nuclide concentration field simultaneously. The states of temperatures, pore pressures and nuclide concentrations in the near field of a hypothetical nuclear waste repository were investigated. The influence of the half life of the radioactive nuclide on the temporal change of nuclide concentration was analyzed considering the thermo-hydro-mechanical-migratory coupling. The results show that, at the boundary of the vitrified waste, the concentration of radioactive nuclide with a half life of 10 a falls after a period of rising, with the maximum value of 0.182 mol/m3 and the minimum value of 0.181 mol/m3 at the end of computation. For a half life of 1 000 a, the concentration of radioactive nuclide always increases with the increase of the time during the computation period; and the maximum value is 1.686 mol/m3 at the end of the computation. Therefore, under the condition of THM coupling, the concentration of radioactive nuclide with a shorter half life will decrease more quickly with water flow; but for the radioactive nuclide with a longer half life, its concentration will keep at a higher level for a longer time in the migration process.
基金信息:the National Basic Research Program of China
the Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering of China