基于粒子群优化投影寻踪回归模型的短时交通流预测

来源期刊:中南大学学报(自然科学版)2016年第12期

论文作者:龚勃文 邴其春 林赐云 杨兆升 曲鑫

文章页码:4277 - 4283

关键词:智能交通系统;短时交通流预测;投影寻踪回归模型;粒子群优化;灰色关联度分析

Key words:intelligent transportation systems; short-term traffic flow prediction; projection pursuit regression model; particle swarm optimization; grey relational analysis

摘    要:针对短时交通流数据的高度复杂性、随机性和非稳定性,为了进一步提高短时交通流预测的精度,提出一种基于粒子群优化投影寻踪回归模型的短时交通流预测方法。通过灰色关联度分析确定交通流预测影响因子,然后采用粒子群优化算法构建非参数投影寻踪回归模型,并利用上海市南北高架快速路的感应线圈实测数据进行实验验证和对比分析。实验结果表明:PSO-PPR模型的短时交通流预测效果明显提高,其平均预测精度分别比ARIMA模型和BPNN模型提高37.8%和27.2%。

Abstract: Considering the highly complexity, randomness and non-stability characteristics of short-time traffic flow data, a short–term traffic flow prediction method based on particle swarm optimization projection pursuit regression model was put forward. Traffic flow forecasting impact factors were determined by grey relational analysis. Then the projection pursuit nonparametric regression traffic flow forecasting model was constructed using particle swarm optimization algorithm. Finally, validation and comparative analyses were carried out using inductive loop data measured from the north-south viaduct in Shanghai. The results indicate that the proposed PSO-PPR model achieves better prediction performance than comparison methods. The average prediction accuracy of proposed method is 37.8% and 27.2% higher than ARIMA model and BPNN model, respectively.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号