简介概要

Photocatalytic degradation of pesticide residues with RE3+-doped nano-TiO2

来源期刊:Journal of Rare Earths2010年第S1期

论文作者:曾睿 王敬国 崔建宇 胡林 慕康国

文章页码:353 - 356

摘    要:The photocatalytic degradation effects of carbofuran solution under concentration of 0.2,0.4,0.8 g/L Re3+-doped nano-TiO2 were studied.The highest degradation rate of 54.89% was obtained after 4 h degradation when the concentration of nano-TiO2 was 0.4 g/L.Then field trials of photocatalytic degradation with suspension nano-TiO2 were conducted.The photocatalytic degradation effect of organic phosphorus and carbamate pesticides in tomato leaves and soil with different concentratio catalyst(0,0.2,0.4,0.6,0.8 g/L) were studied.The results showed that nano-TiO2 could significantly increase photocatalytic degradation rate of pesticide residues in tomato leaves and soil.Pesticide residues degradation rate could be increased by 20%-30% on the tomato leaves and 15%-20% in soil,and the best concentration of photocatalytic degradation was 0.2-0.4 g/L.

详情信息展示

Photocatalytic degradation of pesticide residues with RE3+-doped nano-TiO2

曾睿,王敬国,崔建宇,胡林,慕康国

Department of Resources and Environment,China Agricultural University

摘 要:The photocatalytic degradation effects of carbofuran solution under concentration of 0.2,0.4,0.8 g/L Re3+-doped nano-TiO2 were studied.The highest degradation rate of 54.89% was obtained after 4 h degradation when the concentration of nano-TiO2 was 0.4 g/L.Then field trials of photocatalytic degradation with suspension nano-TiO2 were conducted.The photocatalytic degradation effect of organic phosphorus and carbamate pesticides in tomato leaves and soil with different concentratio catalyst(0,0.2,0.4,0.6,0.8 g/L) were studied.The results showed that nano-TiO2 could significantly increase photocatalytic degradation rate of pesticide residues in tomato leaves and soil.Pesticide residues degradation rate could be increased by 20%-30% on the tomato leaves and 15%-20% in soil,and the best concentration of photocatalytic degradation was 0.2-0.4 g/L.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号