简介概要

Hydrothermal Preparation and Photocatalytic Water Splitting Properties of ZrW2O8

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2010年第6期

论文作者:蒋丽 上官文峰

文章页码:919 - 923

摘    要:ZrW2O8 was prepared by adjusting Zr:W mole ratio and HCl concentration in hydrothermal reaction processes.The obtained sample was crystallized in α-ZrW2O8 phase (cubic,P213),with band gap energy of 4.0 eV.The properties of photocatalytic water splitting were examined under UV light irradiation.The average rate of H2 evolution over 0.3wt% Pt/ZrW2O8 in the presence of CH3 OH as electron donor (ED) was 23.4 μmol/h,while the average rate of O2 evolution over ZrW2O8 in the presence of AgNO3 as electron scavenger (ES) was 9.8 μmol/h.Moreover,H2 was evolved over 0.3wt% Pt/ZrW2O8 from pure water splitting at a rate of 5.2 μmol/h.The study indicated that the band structure of ZrW2O8 was suitable for reducing H + to H2 and oxidizing H2O to O2.The band structure and photocatalytic water splitting properties of ZrW2O8,different from either ZrO2 (5.0 eV) or WO3 (2.7 eV),were attributed to the hybridization of W5d and Zr4d in conduction band (CB) as well as the change in crystal structure.

详情信息展示

Hydrothermal Preparation and Photocatalytic Water Splitting Properties of ZrW2O8

蒋丽,上官文峰

Research Center for Combustion and Environment Technology,Shanghai Jiao Tong University

摘 要:ZrW2O8 was prepared by adjusting Zr:W mole ratio and HCl concentration in hydrothermal reaction processes.The obtained sample was crystallized in α-ZrW2O8 phase (cubic,P213),with band gap energy of 4.0 eV.The properties of photocatalytic water splitting were examined under UV light irradiation.The average rate of H2 evolution over 0.3wt% Pt/ZrW2O8 in the presence of CH3 OH as electron donor (ED) was 23.4 μmol/h,while the average rate of O2 evolution over ZrW2O8 in the presence of AgNO3 as electron scavenger (ES) was 9.8 μmol/h.Moreover,H2 was evolved over 0.3wt% Pt/ZrW2O8 from pure water splitting at a rate of 5.2 μmol/h.The study indicated that the band structure of ZrW2O8 was suitable for reducing H + to H2 and oxidizing H2O to O2.The band structure and photocatalytic water splitting properties of ZrW2O8,different from either ZrO2 (5.0 eV) or WO3 (2.7 eV),were attributed to the hybridization of W5d and Zr4d in conduction band (CB) as well as the change in crystal structure.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号