简介概要

Fabrication and ultraviolet-shielding properties of silica-coated titania-doped ceria nanoparticles

来源期刊:JOURNAL OF RARE EARTHS2011年第8期

论文作者:陈伟凡 洪建明 李慧泉 李永绣

文章页码:810 - 814

摘    要:A series of well-dispersed titania-doped ceria nanoparticles Ce1-xTixO2 were rapidly prepared by a novel salt-assisted solution combustion process using correspondent metal nitrates as oxidizers and ethyl glycol as fuel, and then coated with amorphous silica by seeded polymerization using tetraethyl orthoslicate (TEOS). The as-prepared samples were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and ultraviolet-visible light (UV-Vis) diffuse reflectance spectroscopy. The results indicated that compared with the as-prepared pure ceria nanoparticles, the red-shift phenomenon occurred for Ti-doped ceria nanoparticles with Ti incorporation. Meanwhile, the absorption intensity in the UV light region slightly decreased and transmission rate in visible light region was somewhat enhanced. In comparison with the silica-coated CeO2 nanopowders, the silica-coated Ce0.95Ti0.05O2 nanopowders displayed the same absorption intensity in the UV light region, broader UV absorption band and higher transmission rate in visible light region.

详情信息展示

Fabrication and ultraviolet-shielding properties of silica-coated titania-doped ceria nanoparticles

陈伟凡1,2,洪建明3,李慧泉4,李永绣2

1. School of Materials Science & Engineering, Nanchang University2. Research Center of Rare Earths & Micro/Nano Functional Materials, Nanchang University3. Center of Materials Analysis, Nanjing University4. Chemistry Department, Fuyang Normal College

摘 要:A series of well-dispersed titania-doped ceria nanoparticles Ce1-xTixO2 were rapidly prepared by a novel salt-assisted solution combustion process using correspondent metal nitrates as oxidizers and ethyl glycol as fuel, and then coated with amorphous silica by seeded polymerization using tetraethyl orthoslicate (TEOS). The as-prepared samples were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and ultraviolet-visible light (UV-Vis) diffuse reflectance spectroscopy. The results indicated that compared with the as-prepared pure ceria nanoparticles, the red-shift phenomenon occurred for Ti-doped ceria nanoparticles with Ti incorporation. Meanwhile, the absorption intensity in the UV light region slightly decreased and transmission rate in visible light region was somewhat enhanced. In comparison with the silica-coated CeO2 nanopowders, the silica-coated Ce0.95Ti0.05O2 nanopowders displayed the same absorption intensity in the UV light region, broader UV absorption band and higher transmission rate in visible light region.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号