Aging Precipitation Behavior and Mechanical Properties of Inconel 617 Superalloy
来源期刊:Acta Metallurgica Sinica2013年第3期
论文作者:Yan GUO Bohan WANG Shufang HOU
文章页码:307 - 312
摘 要:Aging precipitation behavior and mechanical properties of Inconel 617 superalloy aged at 760 ℃ for up to 10000 h were investigated. The results showed that the precipitates of the aged alloy are M23C6 and M6C carbides and γ phase. The carbide particles precipitated both at the grain boundaries and within grains, and the γ phase particles were situated at intragranular sites in the process of aging. The carbide particles were discontinuously dispersed at grain boundaries after aging for 3000 h, while after aged for 5000 h the carbide particles are merged. The precipitates inside grains remained stable even after aging for 10000 h. The hardness was increased for the alloy aged for 300 h up to 3000 h, which was resulted primarily from the precipitation of carbides as discrete particles both at the grain boundaries and inside grains. Small quantity γ precipitates were formed inside grains, to some extent, which contributed to an enhanced hardness. However, a decrease of the hardness was observed after aging for 5000 h. A significant drop in toughness of the alloy aged for 300 h was attributed to the reduction of the bonding interface strength when carbides precipitated at grain boundaries. Thereafter, the toughness decreased slowly with the prolonged aging time. The high temperature tensile properties of the aged alloy are rather stable even aged for 300-3000 h.
Yan GUO,Bohan WANG,Shufang HOU
Materials Department, Xi’an Thermal Power Research Institute Co.Ltd.
摘 要:Aging precipitation behavior and mechanical properties of Inconel 617 superalloy aged at 760 ℃ for up to 10000 h were investigated. The results showed that the precipitates of the aged alloy are M23C6 and M6C carbides and γ phase. The carbide particles precipitated both at the grain boundaries and within grains, and the γ phase particles were situated at intragranular sites in the process of aging. The carbide particles were discontinuously dispersed at grain boundaries after aging for 3000 h, while after aged for 5000 h the carbide particles are merged. The precipitates inside grains remained stable even after aging for 10000 h. The hardness was increased for the alloy aged for 300 h up to 3000 h, which was resulted primarily from the precipitation of carbides as discrete particles both at the grain boundaries and inside grains. Small quantity γ precipitates were formed inside grains, to some extent, which contributed to an enhanced hardness. However, a decrease of the hardness was observed after aging for 5000 h. A significant drop in toughness of the alloy aged for 300 h was attributed to the reduction of the bonding interface strength when carbides precipitated at grain boundaries. Thereafter, the toughness decreased slowly with the prolonged aging time. The high temperature tensile properties of the aged alloy are rather stable even aged for 300-3000 h.
关键词: