简介概要

Preparation and Characterization of Andalusite Ceramic Used for Solar Thermal Power Generation

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2014年第3期

论文作者:吴建锋 CHENG Hao XU Xiaohong ZHOU Yang HE Dezhi LIU Yi

文章页码:422 - 427

摘    要:High-temperature thermal storage material is one of the critical materials of solar thermal power generation system. Andalusite, kaolin, talc, γ-Al 2 O 3 and partially stabilized zirconia were used as the raw materials, and in-situ synthesis of cordierite was adopted to fabricate thermal storage material for solar thermal power generation via pressureless sintering. The phase compositions, microstructures and thermal shock resistances of the sintered samples were analyzed by XRD, SEM and EDS, and the corresponding mechanical properties were measured. The results show that the major phases of the samples are mullite and zirconium silicate, and the pores distribute uniformly. After being sintered at 1 460 ℃, A4 sample exhibits a better mechanical performance and thermal shock resistance, its loss rate of bending strength after 30 cycles thermal shock is 3.04%, the bulk density and bending strength are 2.86 g·cm-3 and 139.66 MPa, respectively. The better thermal shock resistance of the sample is closely related to the effect of zirconium silicate, such as its uniform distribution, nested growth with mullite, low thermal expansion coeffi cient, high thermal conductivity, etc. This ceramic can be widely used as one of potential thermal storage materials of solar thermal power generation system.

详情信息展示

Preparation and Characterization of Andalusite Ceramic Used for Solar Thermal Power Generation

吴建锋,CHENG Hao,XU Xiaohong,ZHOU Yang,HE Dezhi,LIU Yi

State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology

摘 要:High-temperature thermal storage material is one of the critical materials of solar thermal power generation system. Andalusite, kaolin, talc, γ-Al 2 O 3 and partially stabilized zirconia were used as the raw materials, and in-situ synthesis of cordierite was adopted to fabricate thermal storage material for solar thermal power generation via pressureless sintering. The phase compositions, microstructures and thermal shock resistances of the sintered samples were analyzed by XRD, SEM and EDS, and the corresponding mechanical properties were measured. The results show that the major phases of the samples are mullite and zirconium silicate, and the pores distribute uniformly. After being sintered at 1 460 ℃, A4 sample exhibits a better mechanical performance and thermal shock resistance, its loss rate of bending strength after 30 cycles thermal shock is 3.04%, the bulk density and bending strength are 2.86 g·cm-3 and 139.66 MPa, respectively. The better thermal shock resistance of the sample is closely related to the effect of zirconium silicate, such as its uniform distribution, nested growth with mullite, low thermal expansion coeffi cient, high thermal conductivity, etc. This ceramic can be widely used as one of potential thermal storage materials of solar thermal power generation system.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号