简介概要

Thermogravimetric Study on Oxygen Adsorption/Desorption Properties of Double Perovskite Structure Oxides REBaCo2O5+δ (RE= Pr, Gd, Y)

来源期刊:JOURNAL OF RARE EARTHS2007年第3期

论文作者:Zheng Lu Wang Yingfang Hao Haoshan Liu Shijiang Hu Xing

Key words:thermogravimetry; REBaCo2O5+δ; oxygen adsorption/desorption; rare earths;

Abstract: The oxygen adsorption/desorption properties of double perovskite structure oxides PrBaCo2O5+δ, GdBaCo2O5+δ, and YBaCo2O5+δ were investigated by the thermogravimetry (TG) method in the temperature range of 400~900 ℃. The calculated oxygen adsorption/desorption surface reaction rate constants ka and kd of these double perovskite structure oxides were larger than the commonly used cubic perovskite oxides, such as Ba0.95Ca0.05Co0.8Fe0.2O3-δ and Ba0.5Sr0.5Co0.8Fe0.2O3-δ, whereas, the oxygen permeation flux was comparable to that of the latter, which was attributed to the smaller difference of oxygen vacancy in oxygen and nitrogen atmosphere (Δδ/Vmol) in these double perovskite structure oxides. The large oxygen adsorption/desorption rate constants of GdBaCo2O5+δ and PrBaCo2O5+δ made them nice catalyst coating materials, on other membrane surfaces, to improve the oxygen permeability.

详情信息展示

Thermogravimetric Study on Oxygen Adsorption/Desorption Properties of Double Perovskite Structure Oxides REBaCo2O5+δ (RE= Pr, Gd, Y)

Zheng Lu1,Wang Yingfang1,Hao Haoshan1,Liu Shijiang1,Hu Xing1

(1.School of Physical Engineering and Material Physics Laboratory, Zhengzhou University, Zhengzhou 450052, China)

Abstract:The oxygen adsorption/desorption properties of double perovskite structure oxides PrBaCo2O5+δ, GdBaCo2O5+δ, and YBaCo2O5+δ were investigated by the thermogravimetry (TG) method in the temperature range of 400~900 ℃. The calculated oxygen adsorption/desorption surface reaction rate constants ka and kd of these double perovskite structure oxides were larger than the commonly used cubic perovskite oxides, such as Ba0.95Ca0.05Co0.8Fe0.2O3-δ and Ba0.5Sr0.5Co0.8Fe0.2O3-δ, whereas, the oxygen permeation flux was comparable to that of the latter, which was attributed to the smaller difference of oxygen vacancy in oxygen and nitrogen atmosphere (Δδ/Vmol) in these double perovskite structure oxides. The large oxygen adsorption/desorption rate constants of GdBaCo2O5+δ and PrBaCo2O5+δ made them nice catalyst coating materials, on other membrane surfaces, to improve the oxygen permeability.

Key words:thermogravimetry; REBaCo2O5+δ; oxygen adsorption/desorption; rare earths;

【全文内容正在添加中】

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号