简介概要

MEVVA磁过滤等离子技术制备的Fe纳米颗粒薄膜结构

图书来源:二元合金相图及中间相晶体结构 二元合金相图及中间相晶体结构

作 者:唐仁政 田荣璋

出版时间:2009-05

定 价:320元

图书ISBN:978-7-81105-831-4

出版单位:中南大学出版社

详情信息展示

Influence of Lithium Oxide Addition on the Sintering Behavior and Electrical Conductivity of Gadolinia Doped Ceria

Minfang Han, Ze Liu, Su Zhou and Lian Yu Union Research Center of Fuel Cell, School of Chemical & Environment Engineering, University of Mining & Technology (CUMTB), Beijing 100083, China

摘 要:Ceria-based electrolytes have been widely researched in intermediate-temperature solid oxide fuel cell (SOFC), which might be operated at 500-600?C. Sintering behavior with lithium oxide as sintering additive and electrical conductivity of gadolinia doped ceria (Gd0.1Ce0.9O2δ, GDC10) electrolyte was studied in this paper by X-ray di?raction (XRD), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). As the results, the fully dense GDC10 electrolytes are obtained at a low temperature of 800?C with 2.5 mol% Li2O as sintering additive (called 5LiGDC800). During sintering process, lithium oxides adsorbed by around GDC10 surface help to sinter at 800?C and are kept at the grain boundary of GDC10 in the end. The fine grains of 100-400 nm and high electrical conductivity of 0.014 S/cm at 6000C in 5LiGDC800 were achieved, which contributed to the lower sintering temperature and enhanced grain boundary conductivity, respectively. Lithium, staying at grain boundary, reduces the depletion of oxygen vacancies in the space charge layers and increases the oxygen vacancy concentration in the grain boundary, which leads to improve the total electrical conductivity of 5LiGDC800.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号