文章编号:1004-0609(2010)05-0898-05
CuCr1-xMgxO2 (0≤x≤0.09)薄膜的光电性能
李杨超,张 铭,董国波,赵学平,严 辉
(北京工业大学 材料科学与工程学院,北京 100124)
摘 要:采用射频磁控溅射方法,在石英衬底上制备Mg掺杂的CuCrO2 薄膜。通过XRD、紫外吸收光谱及电学性能的测量表征该系列薄膜样品的结构与光电性能。结果表明:退火处理后所有薄膜样品的结晶性良好,均为3R型铜铁矿结构;薄膜的电导率随掺杂量的增加而增大。当x=0.09时,样品的室温电导率可达6.16×10-2 S/cm,比未掺杂的CuCrO2提高近400倍,且霍耳测试表明所制备的薄膜为p型导电体。电导率随温度变化关系表明:薄膜样品在200~300 K的温度范围内均很好地符合Arrhenius热激活规律;当x=0.09时,最低激活能仅为0.034 eV。薄膜的可见光透过率与光学带隙宽度均随掺杂量的增加而减小。
关键词:CuCrO2薄膜;CuCr1-xMgxO2薄膜;光学性能;光学带隙;室温电导率;激活能
中图分类号:TN304 文献标志码:A
Optical and electrical properties of
CuCr1-xMgxO2 (0≤x≤0.09) thin films
LI Yang-chao, ZHANG Ming, DONG Guo-bo, ZHAO Xue-ping, YAN Hui
(College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China)
Abstract: A series of CuCr1-xMgxO2 (0≤x≤0.09) thin films were deposited on quartz substrates using radio frequency magnetron sputtering. The structures, optical and electrical properties of CuCr0.91Mg0.09O2 thin films were investigated by diffractometry, double-beam spectrophotometry, electrical property measurement, respectively. XRD pattern indicates that all films are of 3R polycrystalline delafossite phase with good crystallinity after annealing. The conductivity of film has a notable improvement with increasing Mg. The conductivity at room temperature is 6.16×10-2 S/cm for x=0.09 which is nearly 400 times higher than that undoped CuCrO2 film. The p-type nature of films is confirmed by Hall measurements. The temperature dependence of electrical conductivity agrees well with the Arrhenius rule in the range of 200-300 K for all samples, and the minimum activation energy is 0.034 eV with x=0.09. Both average transmittance and optical band gap of CuCr1-xMgxO2 films decrease with the increase of Mg concentration.
Key words: CuCrO2 film; CuCr1-xMgxO2 films; optical property; optical band gap; room temperature conductivity; activation energy
透明氧化物半导体 (Transparent oxides semi- conductors, TOSs) 兼备良好的可见光透过率与导电性,在光电子器件中已经得到广泛应用。如掺Sn的In2O3 (ITO)、掺F的SnO2 (FTO)、掺Al的ZnO (ZAO) 等已经被应用到液晶显示、太阳能电池和透明传感器等
领域。然而,目前所应用的TOSs基本上都是n型半导体,p型TOSs的缺乏限制了以透明pn结为基础的全透明光电子器件的研究与开发。1997年,KAWAZOE 等[1]首次报道了p型透明氧化物薄膜CuAlO2。此后,有关p型透明氧化物半导体的研究进入了一个全新的领域,一系列p型Cu基TOSs相继被报道,如CuMO2 (M= In、Ga、Fe、Cr、Sc、Y)[2-7]、SrCu2O2[8]、LaCuOQ(Q=S、Se)[9-10]等。目前,p型TOSs薄膜的电导率仍然很低,与n型TOSs相比相差3~4个数量级,进行受主掺杂是一种有效提高电导率的手段[11-16]。目前,有相关文献报道了二价离子掺杂对CuMO2光电性能的影响,发现掺入的二价离子能明显提高电导率,如CuAl1-xZnxO2[17]、CuAl1-xMgxO2[18]及CuSc1-xMgxO2+y[19-24]等,但有关Mg掺杂对CuCrO2薄膜光电性能影响的研究还较少。此外,CuCrO2除了具有p型透明导电性以外,最近又报道了它的高温热电特性[25]、反铁磁特性[26]以及臭氧气敏特性[27],其已经逐渐发展成为一种多功能的半导体材料。目前学者们主要研究块体材料性能,如果能制备出Mg掺杂的CuCrO2薄膜,将有利于今后开发多功能薄膜电子器件。
磁控溅射镀膜技术具有低温生长,薄膜厚度可控,生长薄膜致密度高,附着性好,与工业化大规模生产相兼容,方便、经济等优点成为常采用的薄膜制备方法。为此,本文作者采用磁控溅射制备CuCr1-xMgxO2薄膜,系统研究不同掺杂量Mg2+取代Cr3+对于薄膜光学和电学性能的影响。
1 实验
多晶CuCr1-xMgxO2 (0≤x≤0.09)靶材使用高温烧结技术制备。将分析纯的Cu2O、Cr2O3和MgO粉末按化学计量比混合球磨24 h后干燥,然后置于刚玉坩埚中,于1 150 ℃保温10 h,生成纯相CuCr1-xMgxO2 (0≤x≤0.09)粉末。将煅烧好的粉末再球磨24 h,干燥后掺胶造粒,用油压机干压成型(压强为500 MPa),除去PVA后于1 150 ℃左右烧结4 h,制成直径为50 mm的陶瓷靶。
使用射频磁控溅射方法在石英衬底上制备CuCr1-xMgxO2 (0≤x≤0.09)薄膜。石英衬底依次用甲苯、丙酮、乙醇超声清洗各15 min,并用高纯N2吹干后放入沉积腔内。溅射气体采用高纯Ar,具体参数如下:背底真空度为5×10-3Pa,功率为100 W,溅射气压为1 Pa,靶基距为40 mm,衬底温度为500 ℃。然后,将制备好的薄膜在管式炉中进行退火,退火温度为900 ℃,保温时间为5 h,并采用高纯N2作保护气。
CuCr1-xMgxO2薄膜的结构分析使用BRUKER–AXS D8 Advance X射线衍射仪 (Cu Kα,0.154 056 nm,40 kV,40 mA),扫描速度为3(?)/min。薄膜厚度由Seimitzu Surfcom 480A型台阶仪测得。薄膜的透过率与反射率测量使用SHIMADZU-UV- 3101PC紫外吸收光谱仪,测量范围为400~800 nm。变温电阻率测量使用Agilent E5273和Lakeshore 340电脑自动控制变温电压电流测试系统,低温由微循环制冷机提供,测试范围为200~300 K。
2 结果与讨论
2.1 薄膜的XRD分析
图1所示为CuCr1-xMgxO2(0≤x≤0.09)薄膜的XRD谱。从图1可以看出,500 ℃原位沉积的CuCr1-xMgxO2薄膜没有任何衍射峰出现,表明薄膜为非晶态。经过900 ℃退火处理后,样品出现(012)衍射峰,表明薄膜已经晶化,并且所有样品的衍射峰与CuCrO2 (PDF39-0247)标准谱一致,属于R3m铜铁矿结构。当Mg掺杂量增加到0.12时,得到的粉末除CuCrO2外,出现杂相CuO和CuCr2O4,表明Mg的掺杂极限范围为0.09~0.11。
图1 CuCr1-xMgxO2薄膜的XRD谱
Fig.1 XRD patterns of CuCr1-xMgxO2 films
2.2 薄膜的光学性能
平均可见光透过率是有关透明氧化物半导体薄膜研究的重要组成部分。图2所示为CuCr1-xMgxO2 (0≤x≤0.09)薄膜在400~800 nm的波长范围内的透过率。由图2可看出,随着Mg掺杂量的增加,薄膜的平均可见光透过率降低,这主要是由空穴对可见光的吸收作用引起的。当掺杂量逐步增加时,空穴数目增多,导致薄膜对可见光吸收的增强,因此,透过率随掺杂量增加而降低[17, 23]。
CuCr1-xMgxO2 (0≤x≤0.09)薄膜的带隙宽度与吸收系数关系式[17, 19]为
根据LI等[5]的研究结果,CuCrO2为直接带隙半导体,带隙拟合结果如表1所列。由表1可看出,随着Mg掺入量的增加,直接带隙变窄(见图3)。当Mg的掺入量为0.09时,带隙宽度降低为2.92 eV。因为Mg掺杂CuCrO2薄膜,杂质浓度和缺陷密度较高,杂质能级可能扩展成为杂质能带,杂质能带与价带相连,形成简并能带,导致带隙宽度降低[23-24]。
图2 CuCr1-xMgxO2薄膜的光学透过率
Fig.2 Optical transmittances of CuCr1-xMgxO2 films
表1 CuCr1-xMgxO2 (0≤x≤0.09)薄膜的厚度与直接带隙以及激活能
Table 1 Film thickness, direct band gap and activation energy of CuCr1-xMgxO2 (0≤x≤0.09) thin films
2.3 薄膜的电学性能
CuCr1-xMgxO2 (0≤x≤0.09)薄膜的电导率(σ)随温度的变化曲线如图4所示。由图4可看出,所有薄膜的电导率随温度的升高而增大,在200~300 K的温度范围内,CuCr1-xMgxO2 (0≤x≤0.09)薄膜的ln σ与1 000/T近似符合线性关系,表明在此温度范围内,薄膜均符合Arrhenius热激活导电规律,激活能可用下面公式表示:
对于未掺杂的CuCrO2薄膜,Ea≈0.145 eV;掺入Mg2+后,热激活能随掺杂量的增加逐渐降低,CuCr0.91Mg0.09O2薄膜的激活能仅有0.034 eV。薄膜激活能随Mg掺杂量的增加而降低,可能有两方面原因。一方面,根据LEE等[15]研究CuAlO2的结果,CuCr1-xMgxO2薄膜可能存在2种类型的载流子[12, 16]:一种是Cu+ d轨道上的空穴,另一种是Cu2+ d轨道上的空穴。对于未掺杂的薄膜,Cu+ d轨道上的空穴对导电性起主要作用,其热激活能较大,而Mg掺杂的薄膜由于电荷补偿效应[12],部分Cu+转变为Cu2+,由于Cu2+ d轨道的空穴热激活能较小,所以,CuCr1-xMgxO2薄膜的激活能随Mg掺入量的增加而降低。另一方面,随着Mg掺杂量的增加,杂质能带展宽,使得空穴从受主能级跃迁到价带所需的能量减小,所以薄膜热激活能逐渐降低。
图3 CuCr0.91Mg0.09O2薄膜的(ahv)2与hv的关系
Fig.3 Plots of (ahv)2 vs hv for CuCr0.91Mg0.09O2 thin film
图4 CuCr1-xMgxO2薄膜的1 000/T与ln σ关系图
Fig.4 Plots of T -1 vs ln σ for CuCr1-xMgxO2 films
在室温(300 K)时,CuCr1-xMgxO2 (0≤x≤0.09) 薄膜的电导率随Mg掺杂量的增加而升高(见图5)。由图5可看出,当x=0.09时,电导率为6.16×10-2 S/cm,比CuCrO2薄膜的电导率提高400倍,可见受主掺杂可以有效提高CuCrO2薄膜的电导率。为了进一步研究CuCr1-xMgxO2薄膜的导电机理,测试了电导率最高的CuCr0.91Mg0.09O2薄膜的霍耳效应,空穴载流子浓度为3.51×1018cm-3,霍耳迁移率为0.11 cm2/(V?s), 霍耳系数为+1.78 cm-3/C。正的霍耳系数表明,在本实验条件下制备的CuCr1-xMgxO2为p型半导体。
图5 CuCr1-xMgxO2薄膜的室温电导率
Fig.5 Room temperature conductivities of CuCr1-xMgxO2 films
3 结论
1) 采用射频磁控溅射方法在石英衬底上制备CuCr1-xMgxO2 (0≤x≤0.09)非晶薄膜,经过退火处理后,薄膜晶化,出现(012)衍射峰,所有Mg掺杂的薄膜均为铜铁矿结构。
2) 随着Mg掺杂量的增加,CuCr1-xMgxO2薄膜的平均可见光透过率降低,带隙宽度变窄。
3) 薄膜的电导率随掺杂量增加显著升高,当x=0.09时,最高电导率为6.16×10-2S/cm,最小激活能为0.034 eV。在200~300 K的温度范围内,CuCr1-xMgxO2薄膜近似符合Arrhenius热激活规律。
REFERENCES
[1] KAWAZOE H, YASUKAWA M, HYODO H, KURITA M, YANAGI H, HOSONO H. p-type electrical conduction in transparent thin films of CuAlO2[J]. Nature, 1997, 389: 939-942.
[2] YANAGI H, HASE T, IBUKI S, UEDA K, HOSONO H. Bipolarity in electrical conduction of transparent oxide semiconductor CuInO2 with delafossite structure[J]. Applied Physics Letters, 2001, 78(11): 1583-1585.
[3] UEDA K, HASE T, YANAGI H, KAWAZOE H, HOSONO H. Epitaxial growth of transparent p-type conducting CuGaO2 thin films on sapphire (001) substrates by pulsed laser deposition[J]. Journal of Applied Physics, 2000, 89(3): 1790-1793.
[4] BARNAB? A, MUGNIER E, PRESMANES L, TAILHADES P H. Preparation of delafossite CuFeO2 thin films by rf sputtering on conventional glass substrate[J]. Materials Letters, 2006, 60: 3468-3470.
[5] LI Da, FANG Xiao-dong, DENG Zan-hong, ZHOU Shu, TAO Ru-hua, DONG Wei-wei, WANG Tao, ZHAO Yi-ping, MENG Gang, ZHU Xue-bin. Electrical, optical and structural properties of CuCrO2 films prepared by pulsed laser deposition[J]. Journal of Physics D: Applied Physics, 2007, 40: 4910-4915.
[6] DUAN N, SLEIGHT A W, JAYARAJ M K, TATE J. Transparent p-type conducting CuScO2+x films[J]. Applied Physics Letters, 2000, 77(9): 1325-1327.
[7] JAYARAJ M K, DRAESEKE A D, TATE J, SLEIGHT A W. p-type transparent thin films of CuY1-xCaxO2[J]. Thin Solid Films, 2001, 397: 244-248.
[8] KUDO A, YANAGI H, HOSONO H, KAWAZOE H. SrCu2O2: A p-type conductive oxide with wide band gap[J]. Applied Physics Letters, 1998, 73(2): 220-222.
[9] HIRAMATSU H, ORITA M, HIRANO M, UEDA K, HOSONO H. Electrical conductivity control in transparent p-type. LaO(CuS) thin films prepared by rf sputtering[J]. Journal of Applied Physics, 2002, 91(11): 9177-9181.
[10] HIRAMATSU H, UEDA K, OHTA H, HIRANO M, KAMIYA T, HOSONO H. Wide gap p-type degenerate semiconductor: Mg-doped LaCuOSe[J]. Thin Solid Films, 2003, 445: 304-308.
[11] NAGARAJAN R, DRAESEKE A D, SLEIGHT A W, TATE J. p-type conductivity in CuCr1-xMgxO2 films and powders[J]. Journal of Applied Physics, 2001, 89(12): 8022-8025.
[12] HUANG Hua, ZHU Chang-fei, LIU Wei. The preparation of p-type transparent conducting oxides CuCr1-xCaxO2 and research about its electrical and optical property[J]. Chinese Journal of Chemical Physics, 2004, 17(2): 162-164.
[13] LIU Min-ling, HUANG Fu-qiang, CHEN Li-dong. p-type electrical conduction and wide optical band gap in Mg-doped CuAlS2[J]. Scripta Materialia, 2008, 58: 1002–1005.
[14] DONG Guo-bo, ZHANG Ming, LAN Wei, ZHU Man-kang, YAN Hui. Electrical transport properties of CuxAlO2 ceramics[J]. The Chinese Journal of Nonferrous Metals, 2007, 17(9): 1471-1474.
[15] LEE M S, KIM T Y, KIM D. Anisotropic electrical conductivity of delafossite-type CuAlO2 laminar crystal[J]. Applied Physics Letters, 2001, 79(13): 2028-2030.
[16] ZHENG S Y, JIANG G S, SU J R, ZHU C F. The structural and electrical property of CuCr1-xNixO2 delafossite compounds[J]. Materials Letters, 2006, 60: 3871–3873.
[17] DONG Pei-ming, ZHANG Ming, DONG Guo-bo, ZHAO Xue-ping, YAN Hui. The optical and electrical properties of Zn-doped CuAlO2 thin films deposited by RF magnetron sputtering[J]. Journal of the Electrochemical Society, 2008, 155(5): 319-322.
[18] DONG Guo-bo, ZHANG Ming, LAN Wei, DONG Pei-ming, YAN Hui. Structural and physical properties of Mg-doped CuAlO2 thin films[J]. Vacuum, 2008, 82: 1321-1324.
[19] DONG Guo-bo, ZHANG Ming, ZHAO Xue-ping, LI Yang-chao, YAN Hui. Influence of working gas pressure on structure and properties of CuAlO2 films[J]. Journal of Crystal Growth, 2009, 311: 1256-1259.
[20] KYKYNESHI R, NIELSEN B C, TATE J, LI J, SLEIGHT A W. Structural and transport properties of CuSc1-xMgxO2+y delafossites[J]. Journal of Applied Physics, 2005, 96(11): 6188-6194.
[21] LIU Min-ling, HUANG Fu-qiang, CHEN Li-dong, WANG Yao-ming, WANG Ying-hua, LI Gui-feng, ZHANG Qun. p-type transparent conductor: Zn-doped CuAlS2[J]. Applied Physics Letters, 2007, 90(7): 2019-1-3.
[22] 刘敏玲. 新型黄铜矿基p型透明导体的设计制备与性能研究[D]. 上海: 中国科学院上海硅酸盐研究所, 2008: 73-76.
LIU Ming-ling. Design, preparation and properties study on novel chalcopyrite-based p-type transparent conductor[D]. Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Science, 2008: 73-76.
[23] 刘恩科, 朱秉升, 罗晋生. 半导体物理学[M]. 北京: 电子工业出版社, 2003.
LIU En-ke, ZHU Bing-sheng, LUO Jin-sheng. Physics of semiconductor[M]. Beijing: Publishing House of Electronics Industry, 2003.
[24] 徐毓龙. 氧化物与化合物半导体基础[M]. 西安: 西安电子科技大学出版社, 1991.
XU Yu-long. Semiconductors of oxide and compound[M]. Xi’an: Publishing House of Xi’an Electronics and Technology University, 1991.
[25] HAYASHI K, SATO K, NOZAKI T, KAJITANI T. Effect of doping on thermoelectric properties of delafossite type oxide CuCrO2[J]. Japanese Journal of Applied Physics, 2008, 47(1): 59-63.
[26] OKUDA T, JUFUKU N, HIDAKA S, TERADA N. Magnetic, transport, and thermoelectric properties of the delafossite oxides CuCr1-xMgxO2 (0≤x≤0.04)[J]. Physical Review B, 2005, 72(14): 144403-1-4.
[27] DENG Zan-hong, FANG Xiao-dong, LI Da, ZHOU Shu, TAO Ru-hua, DONG Wei-wei, WANG Tao, MENG Gang, ZHU Xue-bin. Room temperature ozone sensing properties of p-type transparent oxide CuCrO2[J]. Journal of Alloys and Compounds, 2009, 484: 619-621.
(编辑 杨 华)
基金项目:北京市教育委员会科技计划资助项目(KM200910005023)
收稿日期:2009-07-01;修订日期:2009-11-23
通信作者:张 铭,副教授;电话:010-67392733;E-mail: mzhang@bjut.edu.cn