基于KPLS特征提取的WNN模拟电路软故障诊断

来源期刊:中南大学学报(自然科学版)2014年第6期

论文作者:丛伟 景博 于宏坤

文章页码:1841 - 1847

关键词:小波神经网络;核偏最小二乘;特征提取;模拟电路;故障诊断

Key words:wavelet neural network; kernel partial least square; feature extraction; analog circuit; fault diagnosis

摘    要:为提高模拟电路的软故障诊断能力,提出一种基于KPLS特征提取和WNN的集成诊断方法。首先利用KPLS良好的特征提取能力,构建故障样本集的主元特征集;然后,利用WNN解决复杂非线性问题的优势,建立主元特征集的故障识别模型;最后,由所建模型对各种故障模式进行诊断判定。Sallen-Key带通滤波器的仿真测试表明:该集成方法仅通过不到300次迭代计算即完成模型训练,诊断的总正确率达到96.7%,且9种模式中的6种达到100%正确率,从而验证了其可行性和有效性。

Abstract: In order to improve the ability of soft fault diagnosis of analog circuits, an integrated diagnosis method based on KPLS feature extraction and WNN was proposed. First, the good feature extraction ability of KPLS was used to construct the principal element feature set of fault sample set; then, the advantages of WNN on solving the complicated nonlinearity problems was applied to establish the fault identification model based on principal element feature set; finally, each failure mode was diagnosed and determined by the built model. The simulation experiment of Sallen-Key bandpass filter shows that the integrated method just completes the training of the model by less than 300 iterations computation with the total correct rate 96.7%, and the correct rate of 6 modes in 9 modes reaches 100%, which verifies its feasibility and effectiveness.

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号