简介概要

基于指数冻结因子的锂电池SOC估算算法

来源期刊:机械设计与制造2019年第6期

论文作者:慕振博 孙桓五

文章页码:92 - 95

关键词:荷电状态;Sage-Husa自适应扩展卡尔曼滤波算法;滤波发散判据;指数冻结因子;

摘    要:纯电动汽车的荷电状态(SOC)表示电池组的剩余电量,其直接决定着驾驶员对电动车车剩余里程及对充放电等的判断。由于扩展卡尔曼滤波(EKF)法时其将其中的噪声按均值为零的高斯白噪声处理,因而使SOC估算精度不高乃至出现滤波发散。为防止该类情况发生,提出了一种基于指数冻结因子自适应滤波算法;该算法在Sage-Husa自适应扩展卡尔曼滤波(SHEKF)法的基础上引入发散判据,当有状态变量估算误差变大而发散时,对卡尔曼增益矩阵构造一个自适应指数冻结因子,有效防止了滤波发散,提高了系统稳定性。通过同传统的扩展卡尔曼滤波(EKF)法相比较,试验验证结果表明新方法具有更高的估算精度以及对滤波发散的有效控制。

详情信息展示

基于指数冻结因子的锂电池SOC估算算法

慕振博,孙桓五

摘 要:纯电动汽车的荷电状态(SOC)表示电池组的剩余电量,其直接决定着驾驶员对电动车车剩余里程及对充放电等的判断。由于扩展卡尔曼滤波(EKF)法时其将其中的噪声按均值为零的高斯白噪声处理,因而使SOC估算精度不高乃至出现滤波发散。为防止该类情况发生,提出了一种基于指数冻结因子自适应滤波算法;该算法在Sage-Husa自适应扩展卡尔曼滤波(SHEKF)法的基础上引入发散判据,当有状态变量估算误差变大而发散时,对卡尔曼增益矩阵构造一个自适应指数冻结因子,有效防止了滤波发散,提高了系统稳定性。通过同传统的扩展卡尔曼滤波(EKF)法相比较,试验验证结果表明新方法具有更高的估算精度以及对滤波发散的有效控制。

关键词:荷电状态;Sage-Husa自适应扩展卡尔曼滤波算法;滤波发散判据;指数冻结因子;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号