简介概要

Preparation and upconversion luminescence of monodisperse Gd2O3:Ho3+,Yb3+nanocrystals

来源期刊:Journal of Rare Earths2013年第7期

论文作者:彭玲玲 刘碧桃 韩涛

文章页码:650 - 654

摘    要:Gd2O3:Ho3+,Yb3+ nanocrystals were synthesized via solvothermal method.X-ray diffraction(XRD),transmission electron microscopy(TEM),absorption and upconversion spectra were employed to characterize the synthesized nanocrystals.The results of XRD and TEM showed that obtained Gd2O3:Ho3+,Yb3+ nanocrystals were cubic in crystal structure and uniform spherical in morphology.The average crystallite size was calculated to be 7.5 nm.Green and red up-conversion emissions corresponding to(5F4,5S2)→5I8 and 5F5 → 5I8 transition were observed upon 980 nm excitation at room temperature.The results indicated that both green and red luminescence were based on the two-photon processes.Laser power and doping concentration dependence of the upconverted emissions were studied to understand the upconversion mechanisms.Excited state absorption and energy-transfer processes were discussed as the possible mechanisms for the visible emissions.

详情信息展示

Preparation and upconversion luminescence of monodisperse Gd2O3:Ho3+,Yb3+nanocrystals

彭玲玲,刘碧桃,韩涛

Chongqing Key Laboratory of Micro/Nano Materials Engineering and Technology,Research Center for Material Interdisciplinary Science,Chongqing University of Arts and Science

摘 要:Gd2O3:Ho3+,Yb3+ nanocrystals were synthesized via solvothermal method.X-ray diffraction(XRD),transmission electron microscopy(TEM),absorption and upconversion spectra were employed to characterize the synthesized nanocrystals.The results of XRD and TEM showed that obtained Gd2O3:Ho3+,Yb3+ nanocrystals were cubic in crystal structure and uniform spherical in morphology.The average crystallite size was calculated to be 7.5 nm.Green and red up-conversion emissions corresponding to(5F4,5S2)→5I8 and 5F5 → 5I8 transition were observed upon 980 nm excitation at room temperature.The results indicated that both green and red luminescence were based on the two-photon processes.Laser power and doping concentration dependence of the upconverted emissions were studied to understand the upconversion mechanisms.Excited state absorption and energy-transfer processes were discussed as the possible mechanisms for the visible emissions.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号