简介概要

Shear Model of Metal Melt Flowing on Vibration Wall and Effect of Shear Stress on Solidification Microstructure

来源期刊:Acta Metallurgica Sinica2018年第6期

论文作者:Ren-Guo Guan Xiang Wang Ying-Qiu Shang Di Tie Run-Ze Chao

文章页码:650 - 658

摘    要:In this work,the shear model of metal melt flowing on vibration surface is established,and coupling effects of vibration and shear on the distribution of shear stress in melt and melt solidification microstructure are analyzed.Calculation results show that the transition of melt from laminar flow to turbulent flow occurs earlier with increasing vibration frequency and vibration amplitude.In the laminar flow melt,shear stress in melt decreases with increasing vertical length,but it decreases firstly and then stabilizes with increasing flow length.In the turbulent flow melt,shear stress decreases firstly and then stabilizes with increasing vertical length,but it increases with increasing flow length.With the increase in vibration frequency and amplitude,shear stress along flow direction in laminar flow melt increases,while shear stresses along both flow direction and vertical direction in turbulent flow melt increase.Shear stress in melt decreases with increasing length along vertical direction.With the increase in flow length,shear stress decreases firstly and then stabilizes in laminar flow melt,while it increases in turbulent flow melt.With the increase in vibration frequency and amplitude,shear stress increases in laminar flow melt,while it stabilizes in turbulent flow melt.Based on theoretical calculation,the maximum shear stress in melt during vibration shear flow is always much lower than the yield strength of a-Al grain,so the shear stress induced by vibration shear flow cannot break columnar crystal,which agrees with the experiment result.So,the model can explain the shear constitutive relation of melt flow on vibration surface relatively well.

详情信息展示

Shear Model of Metal Melt Flowing on Vibration Wall and Effect of Shear Stress on Solidification Microstructure

Ren-Guo Guan1,2,Xiang Wang2,Ying-Qiu Shang2,Di Tie2,Run-Ze Chao3

1. School of Materials Science and Engineering,Northwestern Polytechnical University2. School of Materials Science and Engineering,Northeastern University3. Luoyang Ship Material Research Institute

摘 要:In this work,the shear model of metal melt flowing on vibration surface is established,and coupling effects of vibration and shear on the distribution of shear stress in melt and melt solidification microstructure are analyzed.Calculation results show that the transition of melt from laminar flow to turbulent flow occurs earlier with increasing vibration frequency and vibration amplitude.In the laminar flow melt,shear stress in melt decreases with increasing vertical length,but it decreases firstly and then stabilizes with increasing flow length.In the turbulent flow melt,shear stress decreases firstly and then stabilizes with increasing vertical length,but it increases with increasing flow length.With the increase in vibration frequency and amplitude,shear stress along flow direction in laminar flow melt increases,while shear stresses along both flow direction and vertical direction in turbulent flow melt increase.Shear stress in melt decreases with increasing length along vertical direction.With the increase in flow length,shear stress decreases firstly and then stabilizes in laminar flow melt,while it increases in turbulent flow melt.With the increase in vibration frequency and amplitude,shear stress increases in laminar flow melt,while it stabilizes in turbulent flow melt.Based on theoretical calculation,the maximum shear stress in melt during vibration shear flow is always much lower than the yield strength of a-Al grain,so the shear stress induced by vibration shear flow cannot break columnar crystal,which agrees with the experiment result.So,the model can explain the shear constitutive relation of melt flow on vibration surface relatively well.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号