基于三流卷积神经网络模型的图像分类方法
来源期刊:江西理工大学学报2019年第5期
论文作者:罗会兰 易慧
文章页码:86 - 92
关键词:三流卷积神经网络;特征提取;分类器融合;图像分类;
摘 要:为了提高卷积神经网络在提取图像特征的充分性与有效性,提出了一种基于三流卷积神经网络模型的图像分类方法.第一个和第二个网络流的特征提取部分采用交叉"间隔"的方式训练提取图像的不同特征,第三个网络流的特征提取部分采用初始参数,以此来构建三流卷积神经网络模型,提取到更充分有效的图像特征.同时针对每个网络流训练一个分类器,然后运用分类器融合算法对每个网络流的分类器赋予不同权重,得到3个网络流的融合输出,实现最终的分类.在CIFAR-100、Stanford Dogs和UEC FOOD-100和数据集上的实验结果验证了该方法的有效性和鲁棒性.
罗会兰,易慧
江西理工大学信息工程学院
摘 要:为了提高卷积神经网络在提取图像特征的充分性与有效性,提出了一种基于三流卷积神经网络模型的图像分类方法.第一个和第二个网络流的特征提取部分采用交叉"间隔"的方式训练提取图像的不同特征,第三个网络流的特征提取部分采用初始参数,以此来构建三流卷积神经网络模型,提取到更充分有效的图像特征.同时针对每个网络流训练一个分类器,然后运用分类器融合算法对每个网络流的分类器赋予不同权重,得到3个网络流的融合输出,实现最终的分类.在CIFAR-100、Stanford Dogs和UEC FOOD-100和数据集上的实验结果验证了该方法的有效性和鲁棒性.
关键词:三流卷积神经网络;特征提取;分类器融合;图像分类;