基于深度学习的黑钨矿图像识别选矿方法

来源期刊:中国有色金属学报2020年第5期

论文作者:王李管 陈斯佳 贾明滔 涂思羽

文章页码:1192 - 1202

关键词:黑钨矿选矿;迁移学习;深度学习;图像识别;卷积神经网络

Key words:wolframite beneficiation; transfer learning; deep learning; image recognition; convolutional neural network

摘    要:黑钨矿图像识别是代替黑钨选矿手选抛废的一条高效途径,但存在无法识别黑钨矿石与围岩废石的问题。本文利用深度学习中卷积神经网络进行迁移学习来解决,该方法具有收敛快速、所需数据集小和分类准确的优点。首先,对黑钨原矿彩色图像采用旋转、平移等方法进行数据增广降低样本不平衡性。其次,基于Keras框架使用本文优化的神经网络进行全新训练。结果表明:黑钨矿石与围岩两类识别中Wu-VGG19迁移网络矿石识别率最高,为97.51%。此外,本文加入石英脉石类别继续实验,得出修改的Wu-v3迁移网络矿石识别率最高,为99.6%。

Abstract: Wolframite image recognition is an efficient way to replace concentrator for manual sorting, but the problem is that the wolframite and surrounding rock cannot be recognized. In this paper, convolutional neural network in deep learning was used to solve the problem. This method is fast convergence, small data set and accurate classification. Firstly, the RGB image of wolframite was augmented by rotation and translation to reduce sample imbalance. Secondly, the neural network optimized in this paper is used for new training based on Keras framework. Finally, the results show that Wu-VGG19 has the highest recognition rate of 97.51% in wolframite and surrounding rock recognition. In addition, quartz gangue category is added to continue the experiment, and the final result shows that the improved Inception Wu-v3 has the highest ore recognition rate, 99.6%.

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号