简介概要

Thermodynamic studies on gas-based reduction of vanadium titano-magnetite pellets

来源期刊:International Journal of Minerals Metallurgy and Materials2019年第7期

论文作者:Jun-wei Chen Yang Jiao Xi-dong Wang

文章页码:822 - 830

摘    要:Numerous studies have focused on the reduction thermodynamics of ordinary iron ore; by contrast, the literature contains few thermodynamic studies on the gas-based reduction of vanadium titano-magnetite(VTM) in mixed atmospheres of H2, CO, H2O, CO2, and N2. In this paper, thermodynamic studies on the reduction of oxidized VTM pellets were systematically conducted in an atmosphere of a C–H–O system as a reducing agent. The results indicate that VTM of an equivalent valence state is more difficult to reduce than ordinary iron ore. A reduction equilibrium diagram using the C–H–O system as a reducing agent was obtained; it clearly describes the reduction process. Experiments were performed to investigate the effects of the reduction temperature, the gas composition, and two types of iron ores on the reduction of oxidized VTM pellets. The results show that the final reduction degree increases with increasing reduction temperature, increasing molar ratio of H2/(H2 + CO), and decreasing H2O, CO2, and N2 contents. In addition, the reduction processes under various conditions are discussed. All of the results of the reduction experiments are consistent with those of theoretical thermodynamic analysis. This study is expected to provide valuable thermodynamic theory on the industrial applications of VTM.

详情信息展示

Thermodynamic studies on gas-based reduction of vanadium titano-magnetite pellets

Jun-wei Chen,Yang Jiao,Xi-dong Wang

摘 要:Numerous studies have focused on the reduction thermodynamics of ordinary iron ore; by contrast, the literature contains few thermodynamic studies on the gas-based reduction of vanadium titano-magnetite(VTM) in mixed atmospheres of H2, CO, H2O, CO2, and N2. In this paper, thermodynamic studies on the reduction of oxidized VTM pellets were systematically conducted in an atmosphere of a C–H–O system as a reducing agent. The results indicate that VTM of an equivalent valence state is more difficult to reduce than ordinary iron ore. A reduction equilibrium diagram using the C–H–O system as a reducing agent was obtained; it clearly describes the reduction process. Experiments were performed to investigate the effects of the reduction temperature, the gas composition, and two types of iron ores on the reduction of oxidized VTM pellets. The results show that the final reduction degree increases with increasing reduction temperature, increasing molar ratio of H2/(H2 + CO), and decreasing H2O, CO2, and N2 contents. In addition, the reduction processes under various conditions are discussed. All of the results of the reduction experiments are consistent with those of theoretical thermodynamic analysis. This study is expected to provide valuable thermodynamic theory on the industrial applications of VTM.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号