基于混合采样机制的互信息分布估计算法
来源期刊:控制与决策2017年第5期
论文作者:林志毅 谢国波 王丽娟
文章页码:829 - 835
关键词:互信息;自私基因;信息奖惩机制;混合采样机制;
摘 要:针对二阶分布估计算法的早熟收敛问题,提出一种基于混合采样机制的互信息分布估计算法(MIEDA).MIEDA利用互信息度量变量之间的相关性,形成互信息树的概率模型;采用稀疏模型构建的思想,并基于自私基因理论建立信息奖惩机制,以加快算法的收敛速度;结合反向学习、最优解变异和随机采样形成混合采样机制,以提高算法的采样效率.仿真结果表明,MIEDA比常见的二阶分布估计算法具有更高的稳定性和更强的寻优能力.
林志毅,谢国波,王丽娟
广东工业大学计算机学院
摘 要:针对二阶分布估计算法的早熟收敛问题,提出一种基于混合采样机制的互信息分布估计算法(MIEDA).MIEDA利用互信息度量变量之间的相关性,形成互信息树的概率模型;采用稀疏模型构建的思想,并基于自私基因理论建立信息奖惩机制,以加快算法的收敛速度;结合反向学习、最优解变异和随机采样形成混合采样机制,以提高算法的采样效率.仿真结果表明,MIEDA比常见的二阶分布估计算法具有更高的稳定性和更强的寻优能力.
关键词:互信息;自私基因;信息奖惩机制;混合采样机制;