基于ELM的尾矿坝浸润线预测
来源期刊:有色金属2021年第2期
论文作者:邱俊博 胡军
文章页码:103 - 109
关键词:浸润线预测;极限学习机;尾矿坝;归一化;均方误差;
摘 要:为了进行尾矿坝浸润线预测,提出一种极限学习机(ELM)方法。ELM网络能够很好地描述浸润线与其影响因素的非线性关系,将最小干滩长度、库水位、渗流量、竖直位移、水平位移5个主要因素作为ELM网络的输入,浸润线埋深作为网络的输出。为了提高ELM的预测准确性,利用均方误差指标选取归一化方法、激活函数、隐含层节点个数,最终确定最大值归一化方法预处理数据,输入5-9-1ELM网络,选取激活函数为sin型函数进行浸润线预测。同时选取BP神经网络,采用相同的归一化方法和网络形式进行对比。结果表明ELM模型在浸润线短期预测中可行性更高,预测精度佳。
邱俊博,胡军
辽宁科技大学土木工程学院
摘 要:为了进行尾矿坝浸润线预测,提出一种极限学习机(ELM)方法。ELM网络能够很好地描述浸润线与其影响因素的非线性关系,将最小干滩长度、库水位、渗流量、竖直位移、水平位移5个主要因素作为ELM网络的输入,浸润线埋深作为网络的输出。为了提高ELM的预测准确性,利用均方误差指标选取归一化方法、激活函数、隐含层节点个数,最终确定最大值归一化方法预处理数据,输入5-9-1ELM网络,选取激活函数为sin型函数进行浸润线预测。同时选取BP神经网络,采用相同的归一化方法和网络形式进行对比。结果表明ELM模型在浸润线短期预测中可行性更高,预测精度佳。
关键词:浸润线预测;极限学习机;尾矿坝;归一化;均方误差;