基于VMD循环随机跳跃状态网络的时间序列长期预测
来源期刊:控制与决策2020年第9期
论文作者:韩敏 姜涛 冯守渤
文章页码:2175 - 2181
关键词:混沌;时间序列预测;回声状态网络;变分模态分解;多尺度不变距离;预测;
摘 要:由于混沌系统的演化规律复杂,直接对混沌时间序列进行长期预测通常难以达到较好的效果.针对此问题,利用变分模态分解方法将混沌时间序列转化为一系列特征子序列,利用排列熵评估选取子序列个数的合理性,保证特征子序列包含了原序列长期演化趋势.此外,提出一种改进的确定性循环跳跃状态网络作为子序列的预测模型,该网络模型中的储备池采用单向环状连接和双向随机跳跃的拓扑结构,能够避免储备池确定连接结构造成的预测精度较低和随机连接造成网络的不稳定性问题.通过所提出模型对时间序列进行长期预测,采用多种评估手段对预测结果进行分析,表明所提出模型对于长期预测具有较大的优势.
韩敏,姜涛,冯守渤
大连理工大学电子信息与电气工程学部
摘 要:由于混沌系统的演化规律复杂,直接对混沌时间序列进行长期预测通常难以达到较好的效果.针对此问题,利用变分模态分解方法将混沌时间序列转化为一系列特征子序列,利用排列熵评估选取子序列个数的合理性,保证特征子序列包含了原序列长期演化趋势.此外,提出一种改进的确定性循环跳跃状态网络作为子序列的预测模型,该网络模型中的储备池采用单向环状连接和双向随机跳跃的拓扑结构,能够避免储备池确定连接结构造成的预测精度较低和随机连接造成网络的不稳定性问题.通过所提出模型对时间序列进行长期预测,采用多种评估手段对预测结果进行分析,表明所提出模型对于长期预测具有较大的优势.
关键词:混沌;时间序列预测;回声状态网络;变分模态分解;多尺度不变距离;预测;