简介概要

基于SVM分类的煤矿井下人员指纹定位算法

来源期刊:煤炭科学技术2014年第11期

论文作者:吕文红 杨涛 董晓亮 郑小霞 邹慧 梁泉泉

文章页码:73 - 76

关键词:人员定位;煤矿井下;RSSI定位算法;指纹定位算法;

摘    要:为了减少煤矿井下环境对人员定位系统的影响,提出一种基于SVM分类的煤矿井下人员指纹定位算法,该算法由指纹数据库、井下巷道指纹数据采集和井下位置匹配等环节组成。该算法利用SVM分类方法建立指纹数据库,采用奇异值去除方法消除指纹动态影响,通过实时采样信号与指纹数据库进行映射的方法找出最佳匹配位置。通过随机采集50个指纹样点数据作为位置信息,进行多终端用户位置信息测量,并取5个终端用户的测量数据进行分析。定位试验表明,该算法定位误差小于1.5 m,相比传统的基于RSSI定位算法有更高的定位精度。

详情信息展示

基于SVM分类的煤矿井下人员指纹定位算法

吕文红,杨涛,董晓亮,郑小霞,邹慧,梁泉泉

山东科技大学信息与电气工程学院

摘 要:为了减少煤矿井下环境对人员定位系统的影响,提出一种基于SVM分类的煤矿井下人员指纹定位算法,该算法由指纹数据库、井下巷道指纹数据采集和井下位置匹配等环节组成。该算法利用SVM分类方法建立指纹数据库,采用奇异值去除方法消除指纹动态影响,通过实时采样信号与指纹数据库进行映射的方法找出最佳匹配位置。通过随机采集50个指纹样点数据作为位置信息,进行多终端用户位置信息测量,并取5个终端用户的测量数据进行分析。定位试验表明,该算法定位误差小于1.5 m,相比传统的基于RSSI定位算法有更高的定位精度。

关键词:人员定位;煤矿井下;RSSI定位算法;指纹定位算法;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号