PSO算法在多模型自校正动态矩阵控制中的应用
来源期刊:东北大学学报(自然科学版)2008年第2期
论文作者:岳恒 张海军 柴天佑
文章页码:153 - 321
关键词:多模型;粒子群;自校正;动态矩阵;预测控制;
摘 要:为解决多模型控制中固定模型获取问题,将粒子群优化(PSO)算法应用于多模型自校正动态矩阵控制.对一类含跳变参数的单输入单输出离散时间系统,当模型参数突然跳变时,通过PSO算法在线优化自适应模型参数,并根据模型相似度实现固定模型的动态管理,以有效控制模型数量和减轻系统负担.模型切换策略用于选择当前与实际被控对象最接近的控制器.仿真结果表明,该方法能够较大地改善系统的瞬态响应,优于常规的自校正动态矩阵控制算法;并说明了其有效性和可行性.
岳恒,张海军,柴天佑
摘 要:为解决多模型控制中固定模型获取问题,将粒子群优化(PSO)算法应用于多模型自校正动态矩阵控制.对一类含跳变参数的单输入单输出离散时间系统,当模型参数突然跳变时,通过PSO算法在线优化自适应模型参数,并根据模型相似度实现固定模型的动态管理,以有效控制模型数量和减轻系统负担.模型切换策略用于选择当前与实际被控对象最接近的控制器.仿真结果表明,该方法能够较大地改善系统的瞬态响应,优于常规的自校正动态矩阵控制算法;并说明了其有效性和可行性.
关键词:多模型;粒子群;自校正;动态矩阵;预测控制;