简介概要

Preparation and Self-assembly of Chitosan/Carbon Microsphere Composite

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2012年第3期

论文作者:杨永珍 刘旭光

文章页码:454 - 458

摘    要:Carbon-based films were synthesized by self-assembly of chitosan-encapsulated carbon microsphere (CMS@CS) composite. First, carbon microspheres (CMSs) prepared by chemical vapor deposition were modified by HNO3 and H2O2. Second, oxidized CMSs were modified by chitosan (CS). Finally, CMS@CS was self-assembled by vertical deposition, in which suspension concentration and deposition temperature on the quality of self-assembling film were investigated. Field emission scanning electron microscopy, atomic force microscopy, X-ray diffraction, thermogravimetry, and Fourier transformation infrared spectrometry were employed to characterize the morphology and structure of the samples. The results show that CMSs modified by CS had uniform particle size and good dispersion, CMS@CS was self-assembled into a dense film, the film thickened with increasing suspension concentration at fixed temperature, and more ordered film was obtained at 1 wt% of suspension concentration and 50 ℃. The ultraviolet-visible absorption spectra show that the absorbance of CMS@CS film grew steadily with increasing suspension concentration and that the CMSs with oxygen-containing groups have a good assembling performance to form composite films with CS.

详情信息展示

Preparation and Self-assembly of Chitosan/Carbon Microsphere Composite

杨永珍1,2,刘旭光1,3

1. Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education2. Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology3. College of Chemistry and Chemical Engineering, Taiyuan University of Technology

摘 要:Carbon-based films were synthesized by self-assembly of chitosan-encapsulated carbon microsphere (CMS@CS) composite. First, carbon microspheres (CMSs) prepared by chemical vapor deposition were modified by HNO3 and H2O2. Second, oxidized CMSs were modified by chitosan (CS). Finally, CMS@CS was self-assembled by vertical deposition, in which suspension concentration and deposition temperature on the quality of self-assembling film were investigated. Field emission scanning electron microscopy, atomic force microscopy, X-ray diffraction, thermogravimetry, and Fourier transformation infrared spectrometry were employed to characterize the morphology and structure of the samples. The results show that CMSs modified by CS had uniform particle size and good dispersion, CMS@CS was self-assembled into a dense film, the film thickened with increasing suspension concentration at fixed temperature, and more ordered film was obtained at 1 wt% of suspension concentration and 50 ℃. The ultraviolet-visible absorption spectra show that the absorbance of CMS@CS film grew steadily with increasing suspension concentration and that the CMSs with oxygen-containing groups have a good assembling performance to form composite films with CS.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号