简介概要

基于遗传优化小波神经网络的微动齿轮故障诊断

来源期刊:机械设计与制造2012年第6期

论文作者:白政民 王武 董永强

文章页码:176 - 178

关键词:小波神经网络;遗传算法;故障诊断;微动齿轮;

摘    要:给出了微动齿轮的机械振动机理和故障特征,建立了三层小波神经网络,并结合遗传算法进行小波神经网络参数优化。将微动齿轮故障分为无故障、齿轮断层、齿轮面磨损脱落、齿轮面损伤,齿轮面裂痕等五种故障,通过振动试验测试故障信息,将其作为小波神经网络的训练样本,并结合遗传优化实现网络隐层节点和小波参数最佳值。仿真结果表明遗传优化的小波神经网络能够有效避免神经网络不收敛的缺点,提高学习速度,采用遗传优化神经网络进行微动齿轮故障诊断,具有较高的诊断精度和效率,可以有效应用于其他系统的故障诊断工程中。

详情信息展示

基于遗传优化小波神经网络的微动齿轮故障诊断

白政民,王武,董永强

许昌学院电气信息工程学院

摘 要:给出了微动齿轮的机械振动机理和故障特征,建立了三层小波神经网络,并结合遗传算法进行小波神经网络参数优化。将微动齿轮故障分为无故障、齿轮断层、齿轮面磨损脱落、齿轮面损伤,齿轮面裂痕等五种故障,通过振动试验测试故障信息,将其作为小波神经网络的训练样本,并结合遗传优化实现网络隐层节点和小波参数最佳值。仿真结果表明遗传优化的小波神经网络能够有效避免神经网络不收敛的缺点,提高学习速度,采用遗传优化神经网络进行微动齿轮故障诊断,具有较高的诊断精度和效率,可以有效应用于其他系统的故障诊断工程中。

关键词:小波神经网络;遗传算法;故障诊断;微动齿轮;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号