基于GS-PSO-SVM模型的边坡稳定性预测模型
来源期刊:中国矿业2020年第6期
论文作者:黄俊 刘小生
文章页码:87 - 91
关键词:支持向量机;网格搜索法;粒子群算法;边坡稳定;
摘 要:针对传统边坡稳定性预测模型的不足,提出一种基于网格搜索和粒子群优化的支持向量机模型(GS-PSO-SVM model)。为了解决支持向量机参数选取问题,首先利用网格搜索法粗略寻优,确定参数范围,然后利用粒子群二次寻优。利用该模型对边坡实例预测,39个实例样本中,30个为训练样本,9个为预测样本,以岩石重度、黏聚力、内摩擦角、边坡角、边坡高度、孔隙水压力等6个边坡稳定性影响因素作为输入,边坡稳定性状态作为输出,预测结果与单独的网格搜索法、粒子群算法和遗传算法优化的支持向量机模型对比。结果表明,GS-PSO-SVM模型分类准确率100%,有更高的预测精度和预测效率,该模型能有效地对边坡稳定性状态进行预测。
黄俊,刘小生
江西理工大学建筑与测绘工程学院
摘 要:针对传统边坡稳定性预测模型的不足,提出一种基于网格搜索和粒子群优化的支持向量机模型(GS-PSO-SVM model)。为了解决支持向量机参数选取问题,首先利用网格搜索法粗略寻优,确定参数范围,然后利用粒子群二次寻优。利用该模型对边坡实例预测,39个实例样本中,30个为训练样本,9个为预测样本,以岩石重度、黏聚力、内摩擦角、边坡角、边坡高度、孔隙水压力等6个边坡稳定性影响因素作为输入,边坡稳定性状态作为输出,预测结果与单独的网格搜索法、粒子群算法和遗传算法优化的支持向量机模型对比。结果表明,GS-PSO-SVM模型分类准确率100%,有更高的预测精度和预测效率,该模型能有效地对边坡稳定性状态进行预测。
关键词:支持向量机;网格搜索法;粒子群算法;边坡稳定;