简介概要

Effect of substitution of Si by Al on the microstructure and mechanical properties of bainitic transformation-induced plasticity steels

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2017年第12期

论文作者:Kangying Zhu Coralie Mager Mingxin Huang

文章页码:1475 - 1486

摘    要:The effect of partial or full substitution of Si by Al on the microstructure and mechanical properties has been extensively studied in multi-phase transformation-induced plasticity(TRIP) steels with polygonal ferrite matrix, but rarely studied in bainitic TRIP steels. The aim of the present study is to properly investigate the effect of Al and Si on bainite transformation, microstructure and mechanical properties in bainitic steels in order to provide guidelines for the alloying design as a function of process parameters for the 3 rd generation advanced high strength steels(AHSS). It is shown from the dilatometry study,microstructural investigations and tensile properties measurements that the Al addition results in an acceleration whereas Si addition leads to a retardation in bainite transformation kinetics. The addition of Al retards the decomposition of austenite into pearlite and carbides at holding temperatures higher than450℃ whereas Si retards the decomposition of austenite into carbides at temperatures lower than 450℃.Consequently, the Al-added bainitic steel has a better strength-elongation combination at bainitic holding temperatures higher than 450℃ while Si-added steel has a better strength-elongation combination at temperatures lower than 450℃. The higher yield strength of Al-added steel is mainly attributed to its finer bainitic lath. The higher tensile strength of Si-added steel is not only related to the stronger contribution of Si on work hardening during deformation, but also due to the higher volume fraction of martensite or martensite/austenite(MA) blocks in all heat treatment conditions, as well as the lower mechanical stability of retained austenite in this steel.

详情信息展示

Effect of substitution of Si by Al on the microstructure and mechanical properties of bainitic transformation-induced plasticity steels

Kangying Zhu1,Coralie Mager1,Mingxin Huang2

1. R&D Arcelor Mittal Maizières2. Department of Mechanical Engineering, The University of Hong Kong

摘 要:The effect of partial or full substitution of Si by Al on the microstructure and mechanical properties has been extensively studied in multi-phase transformation-induced plasticity(TRIP) steels with polygonal ferrite matrix, but rarely studied in bainitic TRIP steels. The aim of the present study is to properly investigate the effect of Al and Si on bainite transformation, microstructure and mechanical properties in bainitic steels in order to provide guidelines for the alloying design as a function of process parameters for the 3 rd generation advanced high strength steels(AHSS). It is shown from the dilatometry study,microstructural investigations and tensile properties measurements that the Al addition results in an acceleration whereas Si addition leads to a retardation in bainite transformation kinetics. The addition of Al retards the decomposition of austenite into pearlite and carbides at holding temperatures higher than450℃ whereas Si retards the decomposition of austenite into carbides at temperatures lower than 450℃.Consequently, the Al-added bainitic steel has a better strength-elongation combination at bainitic holding temperatures higher than 450℃ while Si-added steel has a better strength-elongation combination at temperatures lower than 450℃. The higher yield strength of Al-added steel is mainly attributed to its finer bainitic lath. The higher tensile strength of Si-added steel is not only related to the stronger contribution of Si on work hardening during deformation, but also due to the higher volume fraction of martensite or martensite/austenite(MA) blocks in all heat treatment conditions, as well as the lower mechanical stability of retained austenite in this steel.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号