简介概要

基于改进粒子群算法的优化策略

来源期刊:东北大学学报(自然科学版)2011年第9期

论文作者:卢峰 高立群

文章页码:1221 - 1224

关键词:进化算法;粒子群算法;全局优化;慢变函数;自适应;

摘    要:为提高传统粒子群算法的搜索速度和搜索精度,提出了一种改进的自适应粒子群优化算法.将正则变化函数和慢变函数引入传统位置更新和速度更新公式当中,形成两种新的更新机制:搜索算子和开发算子.在算法运行的初始阶段,种群中大部分个体将按照搜索算子进行更新,搜索算子将有助于种群遍历整个解空间;随着迭代次数的增加,按照搜索算子进行更新的个体将逐渐减少,而按照开发算子进行更新的个体将逐渐增多,开发算子将有效地克服陷入局部最优解的问题.通过典型测试函数的仿真实验,新算法在加快收敛速度同时,提高了算法的全局搜索能力.

详情信息展示

基于改进粒子群算法的优化策略

卢峰,高立群

东北大学信息科学与工程学院

摘 要:为提高传统粒子群算法的搜索速度和搜索精度,提出了一种改进的自适应粒子群优化算法.将正则变化函数和慢变函数引入传统位置更新和速度更新公式当中,形成两种新的更新机制:搜索算子和开发算子.在算法运行的初始阶段,种群中大部分个体将按照搜索算子进行更新,搜索算子将有助于种群遍历整个解空间;随着迭代次数的增加,按照搜索算子进行更新的个体将逐渐减少,而按照开发算子进行更新的个体将逐渐增多,开发算子将有效地克服陷入局部最优解的问题.通过典型测试函数的仿真实验,新算法在加快收敛速度同时,提高了算法的全局搜索能力.

关键词:进化算法;粒子群算法;全局优化;慢变函数;自适应;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号