简介概要

核极限学习机在浮选回收率中的研究与应用

来源期刊:中国矿业2016年第7期

论文作者:王欢 徐鑫 鲁鹏云 张军 彭文娟

文章页码:118 - 124

关键词:核极限学习机;浮选回收率;人工智能;预测模型;

摘    要:浮选回收率是浮选过程中重要的生产指标。需要通过人工检测得到的浮选回收率,可知性具有较大的时间延迟,使工人不能及时有效地对生产做出相应控制调整。由于浮选过程相当复杂,变量维数高、关联性强、噪声大、检测信号不完备等因素,难以建立较精确的回收率预测模型。然而,人工智能与机器学习技术能在机理不清楚、信息不完备的情况下,对复杂系统建立基于数据驱动的经验模型。因此,本文为提高回收率检测的及时性、有效性,在分析浮选过程相关因素影响的基础上,提出基于核极限学习机建立浮选回收率的预测模型。仿真实验结果表明,该建模方法可有效辨识浮选过程中,输入数据与回收率测量值之间的非线性关系,且具有更高的预测精度与训练性能。

详情信息展示

核极限学习机在浮选回收率中的研究与应用

王欢1,徐鑫1,鲁鹏云1,张军1,彭文娟2,3

1. 鞍钢集团矿业公司2. 北京科技大学计算机与通信工程学院3. 材料领域知识工程北京市重点实验室

摘 要:浮选回收率是浮选过程中重要的生产指标。需要通过人工检测得到的浮选回收率,可知性具有较大的时间延迟,使工人不能及时有效地对生产做出相应控制调整。由于浮选过程相当复杂,变量维数高、关联性强、噪声大、检测信号不完备等因素,难以建立较精确的回收率预测模型。然而,人工智能与机器学习技术能在机理不清楚、信息不完备的情况下,对复杂系统建立基于数据驱动的经验模型。因此,本文为提高回收率检测的及时性、有效性,在分析浮选过程相关因素影响的基础上,提出基于核极限学习机建立浮选回收率的预测模型。仿真实验结果表明,该建模方法可有效辨识浮选过程中,输入数据与回收率测量值之间的非线性关系,且具有更高的预测精度与训练性能。

关键词:核极限学习机;浮选回收率;人工智能;预测模型;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号