简介概要

Lanthanum chloride improves maize grain yield by promoting photosynthetic characteristics, antioxidants enzymes and endogenous hormone at reproductive stages

来源期刊:JOURNAL OF RARE EARTHS2019年第7期

论文作者:Wenwen Cui Muhammad Kamran Quanhao Song Bingyun Zuo Zhikuan Jia Qingfang Han

文章页码:781 - 790

摘    要:Despite an increase in application spectrum of rare earth elements in agriculture, all studies show that the suitable accumulation of rare earth elements can improve the crop seedling growth, but there is little research about REEs on physiological mechanisms of crops at reproductive stages. Therefore, this study was conducted to examine the possible potential benefits of lanthanum chloride(LaCl3) on the senescence and grain yield responses of maize. In this study, maize seeds were pre-treated by soaking with LaCl3 at the concentrations of 0(CK), 400(LC1), 800(LC2) and 1200(LC3) μmol/L, to evaluate its effect on the green leaf area, chlorophyll contents, photosynthesis, antioxidants, endogenous hormones in the later crop growth stages. The results show that LC1 and LC2 treatments evidently increase green leaf area, above ground dry biomass, accompanied by a distinct increase in the chlorophyll contents, and photo synthetic capacity, which promote the ear characteristics and grain yield of maize. In addition, LC1 and LC2 treatments simultaneously increase the activities of antioxidants, including superoxide dismutases, catalases, peroxidases, soluble protein, and enhanced levels of auxin, gibberellin and zeatin,following a dose-response tendency. Themalondialdehyde and abscisic acid levels transiently increase with the progression in the growth stage of the crop but are markedly decreased at LC1 and LC2 treatments, while LC3 treatment has no significant effect on malondialdehyde and even accelerates the accumulation of abscisic acid in maize leaves. Our data suggest that seed priming with LaCl3 at a suitable concentration range(400-800 μmol/L) can prolong the functional periods of leaves, increase photosynthetic capacity, enhance antioxidant activity, and alter endogenous hormone levels at reproductive stages, resulting in delaying leaf senescence rate and increasing yield. However, the moderate concentration of LaCl3 for maize is LC2(800 μmol/L), and can be effectively used to improve grain yield of maize.

详情信息展示

Lanthanum chloride improves maize grain yield by promoting photosynthetic characteristics, antioxidants enzymes and endogenous hormone at reproductive stages

Wenwen Cui1,2,3,Muhammad Kamran1,2,Quanhao Song4,Bingyun Zuo1,2,Zhikuan Jia1,2,Qingfang Han1,2

1. Key Laboratory of Crop Physiological Ecology and Tillage in Northwestern Loess Plateau of Ministry of Agriculture/College of Agronomy Northwest A&F University2. Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Institute of Water-saving Agriculture in Arid of China, Northwest A&F University3. Zhumadian Academy of Industry Innovation and Development, Huanghuai University4. Zhumadian Academy of Agricultural Sciences

摘 要:Despite an increase in application spectrum of rare earth elements in agriculture, all studies show that the suitable accumulation of rare earth elements can improve the crop seedling growth, but there is little research about REEs on physiological mechanisms of crops at reproductive stages. Therefore, this study was conducted to examine the possible potential benefits of lanthanum chloride(LaCl3) on the senescence and grain yield responses of maize. In this study, maize seeds were pre-treated by soaking with LaCl3 at the concentrations of 0(CK), 400(LC1), 800(LC2) and 1200(LC3) μmol/L, to evaluate its effect on the green leaf area, chlorophyll contents, photosynthesis, antioxidants, endogenous hormones in the later crop growth stages. The results show that LC1 and LC2 treatments evidently increase green leaf area, above ground dry biomass, accompanied by a distinct increase in the chlorophyll contents, and photo synthetic capacity, which promote the ear characteristics and grain yield of maize. In addition, LC1 and LC2 treatments simultaneously increase the activities of antioxidants, including superoxide dismutases, catalases, peroxidases, soluble protein, and enhanced levels of auxin, gibberellin and zeatin,following a dose-response tendency. Themalondialdehyde and abscisic acid levels transiently increase with the progression in the growth stage of the crop but are markedly decreased at LC1 and LC2 treatments, while LC3 treatment has no significant effect on malondialdehyde and even accelerates the accumulation of abscisic acid in maize leaves. Our data suggest that seed priming with LaCl3 at a suitable concentration range(400-800 μmol/L) can prolong the functional periods of leaves, increase photosynthetic capacity, enhance antioxidant activity, and alter endogenous hormone levels at reproductive stages, resulting in delaying leaf senescence rate and increasing yield. However, the moderate concentration of LaCl3 for maize is LC2(800 μmol/L), and can be effectively used to improve grain yield of maize.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号