简介概要

基于QBC主动学习方法建立电信客户信用风险等级评估模型

来源期刊:工程科学学报2007年第4期

论文作者:赵悦 穆志纯 董洁 付冬梅 何伟

文章页码:442 - 446

关键词:电信客户;信用等级;主动学习;投票;相对熵;

摘    要:电信客户信用风险等级评估是对电信客户的信用风险进行等级分类.针对建立客户信用风险等级分类模型时,大量带有类标注数据难以获得的问题,提出了基于主动学习的分类器建模方法,并对基于QBC(委员会投票选择)的主动学习算法进行改进以提高分类器的预测精度.通过对实际电信客户数据进行信用风险等级建模实验,结果表明:应用新算法,分类器使用了较少的带类标签样本数据,达到了与被动学习相同的精度,大大降低了信用专家评估数据的工作量.

详情信息展示

基于QBC主动学习方法建立电信客户信用风险等级评估模型

赵悦,穆志纯,董洁,付冬梅,何伟

摘 要:电信客户信用风险等级评估是对电信客户的信用风险进行等级分类.针对建立客户信用风险等级分类模型时,大量带有类标注数据难以获得的问题,提出了基于主动学习的分类器建模方法,并对基于QBC(委员会投票选择)的主动学习算法进行改进以提高分类器的预测精度.通过对实际电信客户数据进行信用风险等级建模实验,结果表明:应用新算法,分类器使用了较少的带类标签样本数据,达到了与被动学习相同的精度,大大降低了信用专家评估数据的工作量.

关键词:电信客户;信用等级;主动学习;投票;相对熵;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号