Synthesis and Thermal Insulation Performance of Silica Aerogel from Recycled Coal Gangue by Means of Ambient Pressure Drying
来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2015年第5期
论文作者:朱平华 ZHENG Meng 赵善宇 WU Junyong 徐海珣
文章页码:908 - 913
摘 要:Silica aerogel materials are well recognized for their superinsulation performance and are regarded as one of the hot candidates to revolutionize building insulation. To date, high production cost related to exorbitant precursors as well as cumbrous multi-step hydrophobization process has often narrowed the field of applications. In this work, granular silica aerogel materials were synthesized by extracting Si O2 from recycled rich silicon coal gangue, followed by one-step hydrophobization and ambient pressure drying. Lightweight(about 0.16 g/cm3) and nanostructural aerogels were obtained through this route. They exhibit a 3D open porous microstructure with around 600 cm2/g surface area and 20 nm of the average pore diameter, thermal conductivity of 4-5 mm packed granules is 20-25 m W/(m·K), which was proved by both guarded hot plate and hot-wire transient methods. This study offers a new facile route for the synthesis of silica aerogel from recycled solid waste coal gangue and suggests a method, which may lead to a cost reduction in terms of industrial production.
朱平华1,ZHENG Meng1,赵善宇1,2,WU Junyong1,徐海珣1
1. School of Environmental and Safety Engineering, Changzhou University
摘 要:Silica aerogel materials are well recognized for their superinsulation performance and are regarded as one of the hot candidates to revolutionize building insulation. To date, high production cost related to exorbitant precursors as well as cumbrous multi-step hydrophobization process has often narrowed the field of applications. In this work, granular silica aerogel materials were synthesized by extracting Si O2 from recycled rich silicon coal gangue, followed by one-step hydrophobization and ambient pressure drying. Lightweight(about 0.16 g/cm3) and nanostructural aerogels were obtained through this route. They exhibit a 3D open porous microstructure with around 600 cm2/g surface area and 20 nm of the average pore diameter, thermal conductivity of 4-5 mm packed granules is 20-25 m W/(m·K), which was proved by both guarded hot plate and hot-wire transient methods. This study offers a new facile route for the synthesis of silica aerogel from recycled solid waste coal gangue and suggests a method, which may lead to a cost reduction in terms of industrial production.
关键词: