岩爆等级预测的随机森林模型及应用

来源期刊:中国有色金属学报(英文版)2013年第2期

论文作者:董陇军 李夕兵 彭 康

文章页码:472 - 477

关键词:采矿工程;隧道工程;地下硐室;岩爆;随机森林

Key words:mining engineering; tunnel engineering; underground caverns; rockburst; Random Forest

摘    要:将随机森林分类方法应用于岩爆等级判定问题中。选用洞室围岩最大的切向应力、岩石单轴抗压强度、抗拉强度、岩石弹性能量指数作为岩爆等级判定的因素,并按照不同的组合形式将其分为指标组I和II。以收集到的工程中的实际岩爆情况及数据作为训练样本,进行分析计算,建立岩爆等级判定的随机森分析模型。运用该分析模型对未参加训练的国内外工程实际岩爆情况进行判定,并与支持向量机及神经网络的判定结果进行比较。研究表明,指标组I优于指标组II;用随机森林、支持向量机和神经网络方法计算的正确率分别为100%、90%、80%。可见,随机森林方法判别能力强,误判率低,是解决岩爆等级判定的一条有效途径。

Abstract: The method of Random Forest (RF) was used to classify whether rockburst will happen and the intensity of rockburst in the underground rock projects. Some main control factors of rockburst, such as the values of in-situ stresses, uniaxial compressive strength and tensile strength of rock, and the elastic energy index of rock, were selected in the analysis. The traditional indicators were summarized and divided into indexes I and II. Random Forest model and criterion were obtained through training 36 sets of rockburst samples which come from underground rock projects in domestic and abroad. Another 10 samples were tested and evaluated with the model. The evaluated results agree well with the practical records. Comparing the results of support vector machine (SVM) method, and artificial neural network (ANN) method with random forest method, the corresponding misjudgment ratios are 10%, 20%, and 0, respectively. The misjudgment ratio using index I is smaller than that using index II. It is suggested that using the index I and RF model can accurately classify rockburst grade.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号