简介概要

Properties and Structure of Microcrystal Muscovite Composite Superabsorbent

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2014年第6期

论文作者:万涛 XIONG Lei HUANG Runqiu SUN Mengmeng QIN Lili TAN Xuemei HU Junyan

文章页码:1302 - 1306

摘    要:Microcrystal muscovite composite superabsorbents(MMCSA) were prepared by water solution polymerization using acrylic acid, acrylamide and itaconic acid as comonomers and microcrystal muscovite as an inorganic additive. Properties, such as water absorbency, salt absorbency, gel strength, water retention capacity and structure of MMCSA characterized by SEM and XRD, were investigated. Water absorbency, salt absorbency, gel strength, water retention capacity and thermostability were enhanced by incorporation of suitable amount of microcrystal muscovite. Water absorption of MMCSA was rapid, requiring 24.55 min to reach 63% of equilibrium absorbency(1218 g/g). Microcrystal muscovite was physically combined into the polymeric network without destroying its polycrystalline structure and microcrystal muscovite composite superabsorbent had some irregular, undulant, and small microporous holes with sheet-like microcrystal muscovite distributed in the polymeric matrix.

详情信息展示

Properties and Structure of Microcrystal Muscovite Composite Superabsorbent

万涛1,2,XIONG Lei2,HUANG Runqiu1,SUN Mengmeng2,QIN Lili2,TAN Xuemei2,HU Junyan2

1. State Key Laboratory of Geohazard Prevention & Geoenvironment Protection, Chengdu University of Technology2. Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institutions,Chengdu University of Technology

摘 要:Microcrystal muscovite composite superabsorbents(MMCSA) were prepared by water solution polymerization using acrylic acid, acrylamide and itaconic acid as comonomers and microcrystal muscovite as an inorganic additive. Properties, such as water absorbency, salt absorbency, gel strength, water retention capacity and structure of MMCSA characterized by SEM and XRD, were investigated. Water absorbency, salt absorbency, gel strength, water retention capacity and thermostability were enhanced by incorporation of suitable amount of microcrystal muscovite. Water absorption of MMCSA was rapid, requiring 24.55 min to reach 63% of equilibrium absorbency(1218 g/g). Microcrystal muscovite was physically combined into the polymeric network without destroying its polycrystalline structure and microcrystal muscovite composite superabsorbent had some irregular, undulant, and small microporous holes with sheet-like microcrystal muscovite distributed in the polymeric matrix.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号