简介概要

基于LS-SVM的机床加工误差预测模型探讨

来源期刊:机械设计与制造2009年第12期

论文作者:舒彤 余香梅 陈丁

文章页码:186 - 188

关键词:加工误差;最小二乘支持向量机;预测模型;

摘    要:提出一种基于最小二乘支持向量机(LS-SVM)的机床加工误差回归模型和预测方法,给出了相应的步骤和算法。通过与BP神经网络和RBF神经网络预测方法比较,仿真结果表明,在较少的误差数据条件下,该模型能够有效的描述和预测加工误差的变化,且模型预测误差比神经网络模型小60%左右;应用该预测模型预测机床加工误差有更高的预测精度,对其实施补偿和控制,将有效提高机床的加工精度。

详情信息展示

基于LS-SVM的机床加工误差预测模型探讨

舒彤1,余香梅2,陈丁1

1. 九江学院电子工程学院2. 九江学院机械与材料工程学院

摘 要:提出一种基于最小二乘支持向量机(LS-SVM)的机床加工误差回归模型和预测方法,给出了相应的步骤和算法。通过与BP神经网络和RBF神经网络预测方法比较,仿真结果表明,在较少的误差数据条件下,该模型能够有效的描述和预测加工误差的变化,且模型预测误差比神经网络模型小60%左右;应用该预测模型预测机床加工误差有更高的预测精度,对其实施补偿和控制,将有效提高机床的加工精度。

关键词:加工误差;最小二乘支持向量机;预测模型;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号