基于生成对抗网络的多目标行人跟踪算法
来源期刊:东北大学学报(自然科学版)2020年第12期
论文作者:魏颖 徐楚翘 刁兆富 李伯群
文章页码:1673 - 3399
关键词:多目标跟踪;生成对抗网络;目标检测;路径预测;特征融合;
摘 要:多目标跟踪领域中,在背景复杂、目标遮挡、目标尺度和姿态变换等情况下,容易出现目标丢失、身份交换和跳变等问题.针对这些问题,提出了一种基于检测的多目标跟踪算法,使用改进的YOLO人体人脸关联算法,对当前帧待检目标进行分类和位置检测,使用生成对抗网络构建特征提取模型,学习目标的主要特征以及细微特征,再运用生成对抗网络生成多目标的运动轨迹,最终融和目标的运动信息和外观信息,得到跟踪目标的最优匹配.在MOT16数据集下的实验结果表明,提出的多目标跟踪算法具有较高的精确度和鲁棒性,对比目前身份交换和跳变最少的算法,跳变的次数少了65%,准确度提高了0.25%.
魏颖1,徐楚翘1,刁兆富1,李伯群2
1. 东北大学信息科学与工程学院2. 辽宁科技大学电子与信息工程学院
摘 要:多目标跟踪领域中,在背景复杂、目标遮挡、目标尺度和姿态变换等情况下,容易出现目标丢失、身份交换和跳变等问题.针对这些问题,提出了一种基于检测的多目标跟踪算法,使用改进的YOLO人体人脸关联算法,对当前帧待检目标进行分类和位置检测,使用生成对抗网络构建特征提取模型,学习目标的主要特征以及细微特征,再运用生成对抗网络生成多目标的运动轨迹,最终融和目标的运动信息和外观信息,得到跟踪目标的最优匹配.在MOT16数据集下的实验结果表明,提出的多目标跟踪算法具有较高的精确度和鲁棒性,对比目前身份交换和跳变最少的算法,跳变的次数少了65%,准确度提高了0.25%.
关键词:多目标跟踪;生成对抗网络;目标检测;路径预测;特征融合;