简介概要

Discrete dislocation plasticity analysis of dispersion strengthening in oxide dispersion strengthened (ODS) steels

来源期刊:中南大学学报(英文版)2014年第4期

论文作者:Akiyuki Takahashi Shota Sato

文章页码:1249 - 1255

Key words:parametric dislocation dynamics; oxide dispersion strengthened steel; Orowan mechanism; critical resolved shear stress; dislocation dipole

Abstract: A discrete dislocation plasticity analysis of dispersion strengthening in oxide dispersion strengthened (ODS) steels was described. Parametric dislocation dynamics (PDD) simulation of the interaction between an edge dislocation and randomly distributed spherical dispersoids (Y2O3) in bcc iron was performed for measuring the influence of the dispersoid distribution on the critical resolved shear stress (CRSS). The dispersoid distribution was made using a method mimicking the Ostwald growth mechanism. Then, an edge dislocation was introduced, and was moved under a constant shear stress condition. The CRSS was extracted from the result of dislocation velocity under constant shear stress using the mobility (linear) relationship between the shear stress and the dislocation velocity. The results suggest that the dispersoid distribution gives a significant influence to the CRSS, and the influence of dislocation dipole, which forms just before finishing up the Orowan looping mechanism, is substantial in determining the CRSS, especially for the interaction with small dispersoids. Therefore, the well-known Orowan equation for determining the CRSS cannot give an accurate estimation, because the influence of the dislocation dipole in the process of the Orowan looping mechanism is not accounted for in the equation.

详情信息展示

Discrete dislocation plasticity analysis of dispersion strengthening in oxide dispersion strengthened (ODS) steels

Akiyuki Takahashi, Shota Sato

(Department of Mechanical Engineering, Faculty of Science and Technology,
Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan)

Abstract:A discrete dislocation plasticity analysis of dispersion strengthening in oxide dispersion strengthened (ODS) steels was described. Parametric dislocation dynamics (PDD) simulation of the interaction between an edge dislocation and randomly distributed spherical dispersoids (Y2O3) in bcc iron was performed for measuring the influence of the dispersoid distribution on the critical resolved shear stress (CRSS). The dispersoid distribution was made using a method mimicking the Ostwald growth mechanism. Then, an edge dislocation was introduced, and was moved under a constant shear stress condition. The CRSS was extracted from the result of dislocation velocity under constant shear stress using the mobility (linear) relationship between the shear stress and the dislocation velocity. The results suggest that the dispersoid distribution gives a significant influence to the CRSS, and the influence of dislocation dipole, which forms just before finishing up the Orowan looping mechanism, is substantial in determining the CRSS, especially for the interaction with small dispersoids. Therefore, the well-known Orowan equation for determining the CRSS cannot give an accurate estimation, because the influence of the dislocation dipole in the process of the Orowan looping mechanism is not accounted for in the equation.

Key words:parametric dislocation dynamics; oxide dispersion strengthened steel; Orowan mechanism; critical resolved shear stress; dislocation dipole

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号