简介概要

Novel Salt-Assisted Combustion Synthesis of High Surface Area Ceria Nanopowders by An Ethylene Glycol-Nitrate Combustion Process

来源期刊:JOURNAL OF RARE EARTHS2006年第4期

论文作者:Li Fengsheng Chen Weifan Li Yongxiu Yu Jiyi

Key words:salt-assisted; combustion synthesis; ceria; nanopowders; ethylene glycol; high surface area; rare earths;

Abstract: A novel salt-assisted combustion process with ethylene glycol as a fuel and nitrate as an oxidant to synthesize high surface area ceria nanopowders was reported. The effects of various tunable conditions, such as fuel-to-oxidant ratio, type of salts, and amount of added salts, on the characteristics of the as-prepared powders were investigated by X-ray diffraction, transmission electron microscopy and BET surface area measurement. A mechanism scheme was proposed to illustrate the possible formation processes of well-dispersed ceria nanoparticles in the salt-assisted combustion synthesis. It was verified that the simple introduction of leachable inert inorganic salts as an excellent agglomeration inhibitor into the redox mixture precursor leads to the formation of well-dispersed ceria particles with particle size in the range of 4~6 nm and a drastic increase in the surface area. The presence of KCl results in an over ten-fold increment in specific surface area from 14.10 m2·g-1 for the produced ceria powders via the conventional combustion synthesis process to 156.74 m2·g-1 for the product by the salt-assisted combustion synthesis process at the same molar ratio of ethylene glycol-nitrate.

详情信息展示

Novel Salt-Assisted Combustion Synthesis of High Surface Area Ceria Nanopowders by An Ethylene Glycol-Nitrate Combustion Process

Li Fengsheng1,Chen Weifan1,Li Yongxiu2,Yu Jiyi1

(1.National Special Superfine Powder Engineering Research Center, Nanjing University of Science & Technology, Nanjing 210094, China;
2.Research Center for Rare Earths & Micro/Nano-Functional Materials, Nanchang University, Nanchang 330047, China)

Abstract:A novel salt-assisted combustion process with ethylene glycol as a fuel and nitrate as an oxidant to synthesize high surface area ceria nanopowders was reported. The effects of various tunable conditions, such as fuel-to-oxidant ratio, type of salts, and amount of added salts, on the characteristics of the as-prepared powders were investigated by X-ray diffraction, transmission electron microscopy and BET surface area measurement. A mechanism scheme was proposed to illustrate the possible formation processes of well-dispersed ceria nanoparticles in the salt-assisted combustion synthesis. It was verified that the simple introduction of leachable inert inorganic salts as an excellent agglomeration inhibitor into the redox mixture precursor leads to the formation of well-dispersed ceria particles with particle size in the range of 4~6 nm and a drastic increase in the surface area. The presence of KCl results in an over ten-fold increment in specific surface area from 14.10 m2·g-1 for the produced ceria powders via the conventional combustion synthesis process to 156.74 m2·g-1 for the product by the salt-assisted combustion synthesis process at the same molar ratio of ethylene glycol-nitrate.

Key words:salt-assisted; combustion synthesis; ceria; nanopowders; ethylene glycol; high surface area; rare earths;

【全文内容正在添加中】

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号