简介概要

BDPCA在线过程监测方法

来源期刊:控制工程2009年第2期

论文作者:肖应旺 姚美银

文章页码:133 - 284

关键词:批过程动态主元分析;时滞变量;在线监测;β-甘露聚糖酶发酵批过程;

摘    要:针对基于多向主元分析(Multiway Principal Component Analysis,MPCA)的方法在批过程故障监测中以样本观测相互独立作为假设前提条件,没有考虑到时间序列相关性的影响及需要对新批次未反应完的数据进行预估的缺陷,提出一种批过程动态主元分析(Batch Dynamic PCA,BDPCA)在线监测方法。该方法采用时滞变量将过程的静态和动态特征相结合,有效地去除了测量变量时间序列的自相关关系,并通过时滞窗口提供了在线监测方案,避免了对新批次未反应完的数据进行预估的需要,提出确定时滞变量的算法。将BDPCA应用于β-甘露聚糖酶发酵批过程的仿真监测,与移动窗多向主元分析(Moving Window MPCA,MWMPCA)法相比,仿真结果表明该方法能够更精确地对过程故障行为进行描述,具有良好的准确性和实时性。

详情信息展示

BDPCA在线过程监测方法

肖应旺,姚美银

摘 要:针对基于多向主元分析(Multiway Principal Component Analysis,MPCA)的方法在批过程故障监测中以样本观测相互独立作为假设前提条件,没有考虑到时间序列相关性的影响及需要对新批次未反应完的数据进行预估的缺陷,提出一种批过程动态主元分析(Batch Dynamic PCA,BDPCA)在线监测方法。该方法采用时滞变量将过程的静态和动态特征相结合,有效地去除了测量变量时间序列的自相关关系,并通过时滞窗口提供了在线监测方案,避免了对新批次未反应完的数据进行预估的需要,提出确定时滞变量的算法。将BDPCA应用于β-甘露聚糖酶发酵批过程的仿真监测,与移动窗多向主元分析(Moving Window MPCA,MWMPCA)法相比,仿真结果表明该方法能够更精确地对过程故障行为进行描述,具有良好的准确性和实时性。

关键词:批过程动态主元分析;时滞变量;在线监测;β-甘露聚糖酶发酵批过程;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号