一种基于相似度的新型粒子群算法
来源期刊:控制与决策2007年第10期
论文作者:刘建华 樊晓平 瞿志华
文章页码:1155 - 1159
关键词:粒子群算法;全局最优性;相似度;聚集度;
摘 要:分析了基本粒子群算法(PSO)全局搜索能力与收敛速度的矛盾,提出了粒子群相似度的概念.根据每个粒子与全局最优粒子的不同相似度,对基本PSO算法的惯性权重进行动态调整.同时提出一种根据相似度计算聚集度的方法,并根据聚集度的大小随机地对粒子重新赋值,控制粒子群的多样性,提高了全局搜索能力.典型优化问题的实例仿真验证了该算法的有效性.
刘建华,樊晓平,瞿志华
摘 要:分析了基本粒子群算法(PSO)全局搜索能力与收敛速度的矛盾,提出了粒子群相似度的概念.根据每个粒子与全局最优粒子的不同相似度,对基本PSO算法的惯性权重进行动态调整.同时提出一种根据相似度计算聚集度的方法,并根据聚集度的大小随机地对粒子重新赋值,控制粒子群的多样性,提高了全局搜索能力.典型优化问题的实例仿真验证了该算法的有效性.
关键词:粒子群算法;全局最优性;相似度;聚集度;