简介概要

Enhanced age-hardening behavior in Al–Cu alloys induced by in-situ synthesized TiC nanoparticles

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2019年第3期

论文作者:Huabing Yang Tong Gao Huaning Zhang Jinfeng Nie Xiangfa Liu

文章页码:374 - 382

摘    要:The influence of in-situ synthesized TiC nanoparticles on age-hardening behavior of Al–Cu alloys was investigated in Al–4.5 Cu–1.5 TiC alloy. It was found that TiC nanoparticles decrease the peak-age time effectively, from about 20 h for Al–4.5 Cu alloy decreasing to about 12 h for the Al–4.5 Cu–1.5 TiC. Mechanical property test shows that the age-hardening effect has been improved by the TiC nanoparticles. The increment of yield strength before and after aging is about 84 MPa for Al–4.5 Cu, while, it reaches to about113 MPa for the Al–4.5 Cu–1.5 TiC. After aging heat treatment, precipitates have been observed both in matrix and around TiC nanoparticles. Due to the difference of coefficient of thermal expansion between TiC and Al, high density dislocations in the Al–4.5 Cu–1.5 TiC were generated during water quenching after solution. Dislocations play a role of diffusion path for Cu atoms during aging, which reduces the peak-age time. Alpha-Al lattice distortion resulted from lattice mismatch of TiC/Al interface induces the precipitation of θ’ phase around TiC nanoparticles, which increases the number density of θ’ and improves the age-hardening effect. This finding is supposed to be also applicable to alloy systems of Al–Cu–Mg,Al–Cu–Mg–Li, Al–Cu–Mg–Ag, etc.

详情信息展示

Enhanced age-hardening behavior in Al–Cu alloys induced by in-situ synthesized TiC nanoparticles

Huabing Yang1,Tong Gao1,Huaning Zhang1,Jinfeng Nie2,Xiangfa Liu1

1. Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University2. Nano Structural Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology

摘 要:The influence of in-situ synthesized TiC nanoparticles on age-hardening behavior of Al–Cu alloys was investigated in Al–4.5 Cu–1.5 TiC alloy. It was found that TiC nanoparticles decrease the peak-age time effectively, from about 20 h for Al–4.5 Cu alloy decreasing to about 12 h for the Al–4.5 Cu–1.5 TiC. Mechanical property test shows that the age-hardening effect has been improved by the TiC nanoparticles. The increment of yield strength before and after aging is about 84 MPa for Al–4.5 Cu, while, it reaches to about113 MPa for the Al–4.5 Cu–1.5 TiC. After aging heat treatment, precipitates have been observed both in matrix and around TiC nanoparticles. Due to the difference of coefficient of thermal expansion between TiC and Al, high density dislocations in the Al–4.5 Cu–1.5 TiC were generated during water quenching after solution. Dislocations play a role of diffusion path for Cu atoms during aging, which reduces the peak-age time. Alpha-Al lattice distortion resulted from lattice mismatch of TiC/Al interface induces the precipitation of θ’ phase around TiC nanoparticles, which increases the number density of θ’ and improves the age-hardening effect. This finding is supposed to be also applicable to alloy systems of Al–Cu–Mg,Al–Cu–Mg–Li, Al–Cu–Mg–Ag, etc.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号