简介概要

Experiment and numerical simulation of melt convection and oxygen distribution in 400-mm Czochralski silicon crystal growth

来源期刊:Rare Metals2017年第2期

论文作者:Ran Teng Yang Li Bin Cui Qing Chang Qing-Hua Xiao Guo-Hu Zhang

文章页码:134 - 141

摘    要:Single-crystalline silicon materials with large dimensions have been widely used as assemblies in plasma silicon etching machines.However,information about large-diameter low-cost preparation technology has not been sufficiently reported.In this paper,it was focused on the preparation of 400-mm silicon(100) crystal lightly doped with boron from 28-in.hot zones.Resistivity uniformity and oxygen concentration of the silicon crystal were investigated by direct-current(DC) four-point probes method and Fourier transform infrared spectroscopy(FTIR),respectively.The global heat transfer,melt flow and oxygen distribution were calculated by finite element method(FEM).The results show that 28-in.hot zones can replace conventional 32 in.ones to grow 400-mm-diameter silicon single crystals.The change in crucible diameter can save energy,reduce cost and improve efficiency.The trend of oxygen distribution obtained in calculations is in good agreement with experimental values.The present model can well predict the 400-mm-diameter silicon crystal growth and is essential for the optimization of furnace design and process condition.

详情信息展示

Experiment and numerical simulation of melt convection and oxygen distribution in 400-mm Czochralski silicon crystal growth

Ran Teng1,2,Yang Li1,Bin Cui1,Qing Chang1,Qing-Hua Xiao1,Guo-Hu Zhang1

1. National Engineering Research Center for Semiconductor Materials2. Semiconductor Materials Co.,Ltd,General Research Institute for Nonferrous Metals

摘 要:Single-crystalline silicon materials with large dimensions have been widely used as assemblies in plasma silicon etching machines.However,information about large-diameter low-cost preparation technology has not been sufficiently reported.In this paper,it was focused on the preparation of 400-mm silicon(100) crystal lightly doped with boron from 28-in.hot zones.Resistivity uniformity and oxygen concentration of the silicon crystal were investigated by direct-current(DC) four-point probes method and Fourier transform infrared spectroscopy(FTIR),respectively.The global heat transfer,melt flow and oxygen distribution were calculated by finite element method(FEM).The results show that 28-in.hot zones can replace conventional 32 in.ones to grow 400-mm-diameter silicon single crystals.The change in crucible diameter can save energy,reduce cost and improve efficiency.The trend of oxygen distribution obtained in calculations is in good agreement with experimental values.The present model can well predict the 400-mm-diameter silicon crystal growth and is essential for the optimization of furnace design and process condition.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号