简介概要

Numerical investigation of the effect of transitory strand opening on mixing in a multistrand tundish

来源期刊:International Journal of Minerals Metallurgy and Materials2011年第5期

论文作者:Sabin Kumar Mishra Pradeep Kumar Jha Satish Chandra Sharma Satish Kumar Ajmani

文章页码:535 - 542

摘    要:In a multistrand,the outlet near the inlet produces short circuiting flow.This leads to the formation of dead zones inside the tundish,and consequently,the mean residence time decreases.In the present study,numerical investigation of mixing inside a delta shaped tundish with sloping boundaries was carried out by solving the Navier-Stokes equation and employing the standard turbulence model.To decrease the dead zone volume inside the tundish,the effect of closing the outlet near the inlet for a small amount of time and further opening it on the mixing behavior of the tundish was studied.The outlets near the inlet were closed for varying amount of time,and the transient analysis of fluid flow and the tracer dispersion study were carried out to find the mixing parameters of the tundish,namely,mean residence time and the ratio of mixed to dead volume of the tundish.An optimum closure time of the near outlet has been found,which yields best mixing inside the tundish.The numerical code was validated against the experimental observation by performing the tracer dispersion study inside a multistrand tundish and the reasonably good match between the experimental and numerical results in terms of residence time distribution (RTD) curves.The results obtained from the present study confirm the strong role of choosing the right time for opening and closing the outlets to get improved characteristics for the fluid flow and mixing behavior of the tundish.The educational version of computational fluid dynamics (CFD) software PHOENICS was used to solve the governing equations and interpret the results in different forms.

详情信息展示

Numerical investigation of the effect of transitory strand opening on mixing in a multistrand tundish

Sabin Kumar Mishra1,Pradeep Kumar Jha1,Satish Chandra Sharma1,Satish Kumar Ajmani2

1. Department of Mechanical and Industrial Engineering,Indian Institute of Technology Roorkee,Roorkee 247667,Uttarakhand,India2. Steelmaking and Casting Research Group,Tata Steel,R&D,Burma Mines,Jamshedpur 831007,Jharkhand,India

摘 要:In a multistrand,the outlet near the inlet produces short circuiting flow.This leads to the formation of dead zones inside the tundish,and consequently,the mean residence time decreases.In the present study,numerical investigation of mixing inside a delta shaped tundish with sloping boundaries was carried out by solving the Navier-Stokes equation and employing the standard turbulence model.To decrease the dead zone volume inside the tundish,the effect of closing the outlet near the inlet for a small amount of time and further opening it on the mixing behavior of the tundish was studied.The outlets near the inlet were closed for varying amount of time,and the transient analysis of fluid flow and the tracer dispersion study were carried out to find the mixing parameters of the tundish,namely,mean residence time and the ratio of mixed to dead volume of the tundish.An optimum closure time of the near outlet has been found,which yields best mixing inside the tundish.The numerical code was validated against the experimental observation by performing the tracer dispersion study inside a multistrand tundish and the reasonably good match between the experimental and numerical results in terms of residence time distribution (RTD) curves.The results obtained from the present study confirm the strong role of choosing the right time for opening and closing the outlets to get improved characteristics for the fluid flow and mixing behavior of the tundish.The educational version of computational fluid dynamics (CFD) software PHOENICS was used to solve the governing equations and interpret the results in different forms.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号