简介概要

Effects and mechanisms of fluorite on the co-reduction of blast furnace dust and seaside titanomagnetite

来源期刊:International Journal of Minerals Metallurgy and Materials2017年第11期

论文作者:Tian-yang Hu Ti-chang Sun Jue Kou Chao Geng Yong-qiang Zhao

文章页码:1201 - 1210

摘    要:The co-reduction roasting and grinding-magnetic separation of seaside titanomagnetite and blast furnace dust was investigated with and without fluorite addition at a reduction roasting temperature of 1250°C for 60 min, a grinding fineness of-43 μm accounting for 69.02 wt% of the total, and a low-intensity magnetic field strength of 151 kA/m. The mineral composition, microstructure, and state of the roasted products were analyzed, and the concentrations of CO and CO2 were analyzed in the co-reduction roasting. Better results were achieved with a small fluorite dosage(≤4 wt%) in the process of co-reduction. In addition, F- was found to reduce the melting point and viscosity of the slag phase because of the high content of aluminate and silicate minerals in the blast furnace dust. The low moisture content of the blast furnace dust and calcic minerals inhibited the hydrolysis of CaF2 and the loss of F-. Compared with the blast furnace dust from Chengdeng, the blast furnace dusts from Jiugang and Jinxin inhibited the diffusion of F-when used as reducing agents, leading to weaker effects of fluorite.

详情信息展示

Effects and mechanisms of fluorite on the co-reduction of blast furnace dust and seaside titanomagnetite

Tian-yang Hu1,2,Ti-chang Sun1,2,Jue Kou1,2,Chao Geng1,2,Yong-qiang Zhao1,2

1. School of Civil and Resources Engineering, University of Science and Technology Beijing2. Key Laboratory of Ministry of Education of China for Efficient Mining and Safety of Metal Mines

摘 要:The co-reduction roasting and grinding-magnetic separation of seaside titanomagnetite and blast furnace dust was investigated with and without fluorite addition at a reduction roasting temperature of 1250°C for 60 min, a grinding fineness of-43 μm accounting for 69.02 wt% of the total, and a low-intensity magnetic field strength of 151 kA/m. The mineral composition, microstructure, and state of the roasted products were analyzed, and the concentrations of CO and CO2 were analyzed in the co-reduction roasting. Better results were achieved with a small fluorite dosage(≤4 wt%) in the process of co-reduction. In addition, F- was found to reduce the melting point and viscosity of the slag phase because of the high content of aluminate and silicate minerals in the blast furnace dust. The low moisture content of the blast furnace dust and calcic minerals inhibited the hydrolysis of CaF2 and the loss of F-. Compared with the blast furnace dust from Chengdeng, the blast furnace dusts from Jiugang and Jinxin inhibited the diffusion of F-when used as reducing agents, leading to weaker effects of fluorite.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号