基于集成神经网络的多故障诊断方法
来源期刊:控制工程2012年第3期
论文作者:李界家 吴成东
文章页码:407 - 411
关键词:铝电解;故障诊断;决策;融合;
摘 要:铝电解过程是一个非线性、多耦合、时变和大时滞过程,受强电场、强磁场、强热场交互干扰,形成了复杂多变的槽况特征,故障种类繁多,发生频繁,有效地故障预报和诊断,对电解系列平稳供电,节约电能、提高铝的产量和质量有重要意义。根据铝电解过程故障特点,提出了基于主成分分析的集成神经网络铝电解多故障诊断方法,建立分层故障诊断模型结构,包括子神经网络层和决策融合神经网络层,子神经网络模块采用了改进型的Elman神经网络,强化信息的记忆功能,并通过主成分分析优化了神经网络结构;决策融合神经网络通过各子网络传递的相关信息,进一步验证对子神经网络诊断结果和复合故障进行综合决策。仿真结果表明,具有良好的诊断效果,验证了该故障诊断方法的可行性和有效性。
李界家1,2,吴成东2
1. 沈阳建筑大学信息与控制工程学院2. 东北大学信息科学与工程学院
摘 要:铝电解过程是一个非线性、多耦合、时变和大时滞过程,受强电场、强磁场、强热场交互干扰,形成了复杂多变的槽况特征,故障种类繁多,发生频繁,有效地故障预报和诊断,对电解系列平稳供电,节约电能、提高铝的产量和质量有重要意义。根据铝电解过程故障特点,提出了基于主成分分析的集成神经网络铝电解多故障诊断方法,建立分层故障诊断模型结构,包括子神经网络层和决策融合神经网络层,子神经网络模块采用了改进型的Elman神经网络,强化信息的记忆功能,并通过主成分分析优化了神经网络结构;决策融合神经网络通过各子网络传递的相关信息,进一步验证对子神经网络诊断结果和复合故障进行综合决策。仿真结果表明,具有良好的诊断效果,验证了该故障诊断方法的可行性和有效性。
关键词:铝电解;故障诊断;决策;融合;