简介概要

Excellent shape recovery characteristics of Cu-Al-Mn-Fe shape memory single crystal

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2020年第22期

论文作者:Shuiyuan Yang Lipeng Guo Xinyu Qing Shen Hong Jixun Zhang Mingpei Li Cuiping Wang Xingjun Liu

摘    要:Shape memory alloys can recover the deformed shape due to their superelasticity or shape memory effect. In this study, a novel Cu-Al-Mn-Fe shape memory single crystal is reported. The results show that it has excellent superelasticity and shape memory effect simultaneously when deformed at room temperature, as well as tunably wide response temperature range with near-zero interval of reverse phase transformation. When deforming one single crystal at room temperature, it not only possesses full superelasticity of 7%, but also tunable shape memory effects up to 8.8 %. The full shape recovery during heating exhibits near-zero response interval and tunably wide response temperature range of 166 K depending on the deformation. The functional characteristics of the alloys result from the controllable reverse phase transformation hinging on the stabilization of stress-induced martensite. This class of Cu-Al-Mn-Fe alloy may be used as both superelastic materials, and shape memory materials with wide working temperature range as high-sensitive detector, driver or sensor.

详情信息展示

Excellent shape recovery characteristics of Cu-Al-Mn-Fe shape memory single crystal

Shuiyuan Yang1,Lipeng Guo1,Xinyu Qing1,Shen Hong1,Jixun Zhang1,Mingpei Li1,Cuiping Wang1,Xingjun Liu1,2

1. College of Materials and Fujian Key Laboratory of Materials Genome, Xiamen University2. State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology University

摘 要:Shape memory alloys can recover the deformed shape due to their superelasticity or shape memory effect. In this study, a novel Cu-Al-Mn-Fe shape memory single crystal is reported. The results show that it has excellent superelasticity and shape memory effect simultaneously when deformed at room temperature, as well as tunably wide response temperature range with near-zero interval of reverse phase transformation. When deforming one single crystal at room temperature, it not only possesses full superelasticity of 7%, but also tunable shape memory effects up to 8.8 %. The full shape recovery during heating exhibits near-zero response interval and tunably wide response temperature range of 166 K depending on the deformation. The functional characteristics of the alloys result from the controllable reverse phase transformation hinging on the stabilization of stress-induced martensite. This class of Cu-Al-Mn-Fe alloy may be used as both superelastic materials, and shape memory materials with wide working temperature range as high-sensitive detector, driver or sensor.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号