基于样本特性欠取样的不均衡支持向量机
来源期刊:控制与决策2013年第7期
论文作者:陶新民 郝思媛 张冬雪 李震
文章页码:978 - 984
关键词:不均衡数据;支持向量机;样本特性;欠取样;
摘 要:针对传统支持向量机在数据失衡的情况下分类效果很不理想的问题,提出一种基于样本特性欠取样的不均衡SVM分类算法.该算法首先在核空间中依据样本信息量选择一定比例的靠近不均衡分类界面的多数类样本;然后根据样本密度信息选择最具有代表性的均衡多数类样本点,在减少多数类样本的同时使分类界面向多数类方向偏移.实验结果表明,所提出的算法与其他不均衡数据预处理方法相比,能有效提高SVM算法在失衡数据中少数类的分类性能、总体分类性能和鲁棒性.
陶新民,郝思媛,张冬雪,李震
哈尔滨工程大学信息与通信工程学院
摘 要:针对传统支持向量机在数据失衡的情况下分类效果很不理想的问题,提出一种基于样本特性欠取样的不均衡SVM分类算法.该算法首先在核空间中依据样本信息量选择一定比例的靠近不均衡分类界面的多数类样本;然后根据样本密度信息选择最具有代表性的均衡多数类样本点,在减少多数类样本的同时使分类界面向多数类方向偏移.实验结果表明,所提出的算法与其他不均衡数据预处理方法相比,能有效提高SVM算法在失衡数据中少数类的分类性能、总体分类性能和鲁棒性.
关键词:不均衡数据;支持向量机;样本特性;欠取样;