一种基于强化学习的深度信念网络设计方法
来源期刊:控制工程2019年第11期
论文作者:邢海霞 程乐
文章页码:2115 - 2120
关键词:深度信念网络;强化学习;自适应对比散度;鲁棒性能;
摘 要:近年来,基于深度学习思想发展起来的深度信念网络(Deep Belief Networks, DBN)在人工智能和大数据预测分析中得到了成功的应用。由于DBN的隐含层数较多,传统的DBN有监督精调(Fine-tuning)方法—BP算法很难得到令人满意的学习精度,甚至会因为梯度扩散(Gradient Diffusion)导致精度调节失败,且网络鲁棒性差。针对此问题,提出一种基于强化学习策略的DBN模型(RL-DBN)及其算法。首先利用自适应对比散度(Adaptive Contrastive Divergence, ACD)算法来快速预训练DBN的隐含层以获取较优的初始权值,然后用强化学习算法代替BP算法对DBN进行精调以提高有监督学习的精度和网络的鲁棒性。实验结果表明,相较于现有的类似模型,RL-DBN在学习速度、精度以及鲁棒性能等方面均有较大提高。
邢海霞,程乐
江苏省软件测试工程技术研究开发中心
摘 要:近年来,基于深度学习思想发展起来的深度信念网络(Deep Belief Networks, DBN)在人工智能和大数据预测分析中得到了成功的应用。由于DBN的隐含层数较多,传统的DBN有监督精调(Fine-tuning)方法—BP算法很难得到令人满意的学习精度,甚至会因为梯度扩散(Gradient Diffusion)导致精度调节失败,且网络鲁棒性差。针对此问题,提出一种基于强化学习策略的DBN模型(RL-DBN)及其算法。首先利用自适应对比散度(Adaptive Contrastive Divergence, ACD)算法来快速预训练DBN的隐含层以获取较优的初始权值,然后用强化学习算法代替BP算法对DBN进行精调以提高有监督学习的精度和网络的鲁棒性。实验结果表明,相较于现有的类似模型,RL-DBN在学习速度、精度以及鲁棒性能等方面均有较大提高。
关键词:深度信念网络;强化学习;自适应对比散度;鲁棒性能;