一种基于卷积神经网络的矿井视频图像降噪方法
来源期刊:矿业研究与开发2018年第2期
论文作者:杨丽丽 盛国
文章页码:106 - 110
关键词:视频图像;滤波;降噪;卷积神经网络;
摘 要:针对井下视频图像易受光线和粉尘影响导致噪声较大的问题,提出了一种基于卷积神经网络的矿井视频图像降噪方法。该方法首先建立三层卷积网络,然后通过对ImageNet数据集进行训练,使卷积网络学习图像的特征,最后利用训练获得的滤波器权重值,对井下视频图像进行滤波降噪处理。与3个滤波算法相比,实验结果在PSNR和MSSSIM指标上都有提升。本文提出的方法能较有效地降低噪声,同时能保持较好的物体边缘结构特征。
杨丽丽,盛国
浙江邮电职业技术学院通信工程学院
摘 要:针对井下视频图像易受光线和粉尘影响导致噪声较大的问题,提出了一种基于卷积神经网络的矿井视频图像降噪方法。该方法首先建立三层卷积网络,然后通过对ImageNet数据集进行训练,使卷积网络学习图像的特征,最后利用训练获得的滤波器权重值,对井下视频图像进行滤波降噪处理。与3个滤波算法相比,实验结果在PSNR和MSSSIM指标上都有提升。本文提出的方法能较有效地降低噪声,同时能保持较好的物体边缘结构特征。
关键词:视频图像;滤波;降噪;卷积神经网络;