简介概要

Preparation of Al matrix nanocomposites by diluting the composite granules containing nano-SiCp under ultrasonic vibaration

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2018年第9期

论文作者:Shulin Lü Pan Xiao Du Yuan Kun Hu Shusen Wu

文章页码:1609 - 1617

摘    要:In this work, an efficient process by diluting the nano-SiCp/Al composite granules in the molten matrix under ultrasonic vibration(UV) was developed to prepare metal matrix nano-composites(MMNCs).Millimeter-sized composite granules with high content of SiC particle(8 wt%) were specially fabricated by dry high-energy ball milling(HBM) without process control agent, and then remelted and diluted in molten Al alloy under UV. The MMNCs melt was finally squeeze cast under a squeeze pressure of 200 MPa, Microstructure of the composite granules during dry HBM was investigated, and the effect of UV on microstructure and mechanical properties of the MMNCs was discussed. The results indicate that nano-SiC particles are uniformly distributed in the nano-SiCp/Al composite granules, which are covered by vestures of pure Al. During diluting, nano-SiC particles released from the composite granules are quickly dispersed in the molten matrix by UV within 4 min. Microstructure of MMNCs is significantly refined under UV and squeeze casting, eutectic Si phase modified to fine islands with an average length of 1.4 μm. Tensile strength of the squeeze cast MMNCs with 1 wt% of nano-SiC particles is 269 MPa, which is improved by 25% compared with the A356 alloy matrix.

详情信息展示

Preparation of Al matrix nanocomposites by diluting the composite granules containing nano-SiCp under ultrasonic vibaration

Shulin Lü,Pan Xiao,Du Yuan,Kun Hu,Shusen Wu

State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology

摘 要:In this work, an efficient process by diluting the nano-SiCp/Al composite granules in the molten matrix under ultrasonic vibration(UV) was developed to prepare metal matrix nano-composites(MMNCs).Millimeter-sized composite granules with high content of SiC particle(8 wt%) were specially fabricated by dry high-energy ball milling(HBM) without process control agent, and then remelted and diluted in molten Al alloy under UV. The MMNCs melt was finally squeeze cast under a squeeze pressure of 200 MPa, Microstructure of the composite granules during dry HBM was investigated, and the effect of UV on microstructure and mechanical properties of the MMNCs was discussed. The results indicate that nano-SiC particles are uniformly distributed in the nano-SiCp/Al composite granules, which are covered by vestures of pure Al. During diluting, nano-SiC particles released from the composite granules are quickly dispersed in the molten matrix by UV within 4 min. Microstructure of MMNCs is significantly refined under UV and squeeze casting, eutectic Si phase modified to fine islands with an average length of 1.4 μm. Tensile strength of the squeeze cast MMNCs with 1 wt% of nano-SiC particles is 269 MPa, which is improved by 25% compared with the A356 alloy matrix.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号