简介概要

Magnetoresistive behavior and magnetization reversal of NiFe/Cu/CoFe/IrMn spin valve GMRs in nanoscale

来源期刊:International Journal of Minerals Metallurgy and Materials2013年第7期

论文作者:Cong Yin Ze Jia Wei-chao Ma Tian-ling Ren

文章页码:700 - 704

摘    要:The magnetoresistance behavior and the magnetization reversal mode of NiFe/Cu/CoFe/IrMn spin valve giant magnetoresistance (SV-GMR) in nanoscale were investigated experimentally and theoretically by nanosized magnetic simulation methods. Based on the Landau-Lifshitz-Gilbert equation, a model with a special gridding was proposed to calculate the giant magnetoresistance ratio (MR) and investigate the magnetization reversal mode. The relationship between MR and the external magnetic field was obtained and analyzed. Studies into the variation of the magnetization distribution reveal that the magnetization reversal mode, that is, the jump variation mode for NiFe/Cu/CoFe/IrMn, depends greatly on the antiferromagnetic coupling behavior between the pinned layer and the antiferromagnetic layer. It is also found that the switching field is almost linear with the exchange coefficient.

详情信息展示

Magnetoresistive behavior and magnetization reversal of NiFe/Cu/CoFe/IrMn spin valve GMRs in nanoscale

Cong Yin,Ze Jia,Wei-chao Ma,Tian-ling Ren

Institute of Microelectronics & Tsinghua National Laboratory for Information Science and Technology, Tsinghua University

摘 要:The magnetoresistance behavior and the magnetization reversal mode of NiFe/Cu/CoFe/IrMn spin valve giant magnetoresistance (SV-GMR) in nanoscale were investigated experimentally and theoretically by nanosized magnetic simulation methods. Based on the Landau-Lifshitz-Gilbert equation, a model with a special gridding was proposed to calculate the giant magnetoresistance ratio (MR) and investigate the magnetization reversal mode. The relationship between MR and the external magnetic field was obtained and analyzed. Studies into the variation of the magnetization distribution reveal that the magnetization reversal mode, that is, the jump variation mode for NiFe/Cu/CoFe/IrMn, depends greatly on the antiferromagnetic coupling behavior between the pinned layer and the antiferromagnetic layer. It is also found that the switching field is almost linear with the exchange coefficient.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号